Added matlab version of the Concurrent Filtering and Smoothing example

release/4.3a0
Stephen Williams 2013-05-21 21:07:45 +00:00
parent 5f371a4e55
commit 8e26da7396
2 changed files with 132 additions and 1 deletions

View File

@ -118,7 +118,7 @@ int main(int argc, char** argv) {
newFactors.add(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
// Unlike the fixed-lag versions, the concurrent filter implementation
// requires the user to supply the specify which keys to marginalize
// requires the user to supply the specify which keys to move to the smoother
FastList<Key> oldKeys;
if(time >= lag+deltaT) {
oldKeys.push_back(1000 * (time-lag-deltaT));

View File

@ -0,0 +1,131 @@
% ----------------------------------------------------------------------------
%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% --------------------------------------------------------------------------
% @file ConcurrentFilteringAndSmoothingExample.m
% @brief Demonstration of the concurrent filtering and smoothing architecture using
% a planar robot example and multiple odometry-like sensors
% @author Stephen Williams
% A simple 2D pose slam example with multiple odometry-like measurements
% - The robot initially faces along the X axis (horizontal, to the right in 2D)
% - The robot moves forward at 2m/s
% - We have measurements between each pose from multiple odometry sensors
clear all;
import gtsam.*;
% Define the smoother lag (in seconds)
lag = 2.0;
% Create a Concurrent Filter and Smoother
concurrentFilter = ConcurrentBatchFilter;
concurrentSmoother = ConcurrentBatchSmoother;
%% Create containers to store the factors and linearization points that
% will be sent to the smoothers
newFactors = NonlinearFactorGraph;
newValues = Values;
%% Create a prior on the first pose, placing it at the origin
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3 ; 0.3 ; 0.1]);
priorKey = uint64(0);
newFactors.add(PriorFactorPose2(priorKey, priorMean, priorNoise));
newValues.insert(priorKey, priorMean); % Initialize the first pose at the mean of the prior
%% Insert the prior factor into the filter
concurrentFilter.update(newFactors, newValues);
%% Now, loop through several time steps, creating factors from different "sensors"
% and adding them to the fixed-lag smoothers
deltaT = 0.25;
for time = deltaT : deltaT : 10.0
%% Initialize factor and values for this loop iteration
newFactors = NonlinearFactorGraph;
newValues = Values;
%% Define the keys related to this timestamp
previousKey = uint64(1000 * (time-deltaT));
currentKey = uint64(1000 * (time));
%% Add a guess for this pose to the new values
% Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s]
% {This is not a particularly good way to guess, but this is just an example}
currentPose = Pose2(time * 2.0, 0.0, 0.0);
newValues.insert(currentKey, currentPose);
%% Add odometry factors from two different sources with different error stats
odometryMeasurement1 = Pose2(0.61, -0.08, 0.02);
odometryNoise1 = noiseModel.Diagonal.Sigmas([0.1; 0.1; 0.05]);
newFactors.add(BetweenFactorPose2(previousKey, currentKey, odometryMeasurement1, odometryNoise1));
odometryMeasurement2 = Pose2(0.47, 0.03, 0.01);
odometryNoise2 = noiseModel.Isotropic.Sigma(3, 0.05);
newFactors.add(BetweenFactorPose2(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
%% Unlike the fixed-lag versions, the concurrent filter implementation
% requires the user to supply the specify which keys to move to the smoother
oldKeys = KeyList;
if time >= lag+deltaT
oldKeys.push_back(uint64(1000 * (time-lag-deltaT)));
end
%% Update the various inference engines
concurrentFilter.update(newFactors, newValues, oldKeys);
%% Add a loop closure to the smoother at a particular time
if time == 8.0
% Now lets create a "loop closure" factor between some poses
loopKey1 = uint64(1000 * (0.0));
loopKey2 = uint64(1000 * (5.0));
loopMeasurement = Pose2(9.5, 1.00, 0.00);
loopNoise = noiseModel.Diagonal.Sigmas([0.5; 0.5; 0.25]);
loopFactor = BetweenFactorPose2(loopKey1, loopKey2, loopMeasurement, loopNoise);
% The state at 5.0s should have been transferred to the concurrent smoother at this point. Add the loop closure.
smootherFactors = NonlinearFactorGraph;
smootherFactors.push_back(loopFactor);
concurrentSmoother.update(smootherFactors, Values());
end
%% Manually synchronize the Concurrent Filter and Smoother every 1.0 s
if mod(time, 1.0) < 0.01
% Synchronize the Filter and Smoother
concurrentSmoother.update();
synchronize(concurrentFilter, concurrentSmoother);
end
%% Print the filter optimized poses
fprintf(1, 'Timestamp = %5.3f\n', time);
filterResult = concurrentFilter.calculateEstimate;
filterResult.at(currentKey).print('Concurrent Estimate: ');
%% Plot Covariance Ellipses
cla;
hold on
filterMarginals = Marginals(concurrentFilter.getFactors, filterResult);
plot2DTrajectory(filterResult, 'k*-', filterMarginals);
smootherGraph = concurrentSmoother.getFactors;
if smootherGraph.size > 0
smootherResult = concurrentSmoother.calculateEstimate;
smootherMarginals = Marginals(smootherGraph, smootherResult);
plot2DTrajectory(smootherResult, 'r*-', smootherMarginals);
end
axis equal
axis tight
view(2)
pause
end