Added matlab version of the Concurrent Filtering and Smoothing example
parent
5f371a4e55
commit
8e26da7396
|
@ -118,7 +118,7 @@ int main(int argc, char** argv) {
|
|||
newFactors.add(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
|
||||
|
||||
// Unlike the fixed-lag versions, the concurrent filter implementation
|
||||
// requires the user to supply the specify which keys to marginalize
|
||||
// requires the user to supply the specify which keys to move to the smoother
|
||||
FastList<Key> oldKeys;
|
||||
if(time >= lag+deltaT) {
|
||||
oldKeys.push_back(1000 * (time-lag-deltaT));
|
||||
|
|
|
@ -0,0 +1,131 @@
|
|||
% ----------------------------------------------------------------------------
|
||||
%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% --------------------------------------------------------------------------
|
||||
|
||||
% @file ConcurrentFilteringAndSmoothingExample.m
|
||||
% @brief Demonstration of the concurrent filtering and smoothing architecture using
|
||||
% a planar robot example and multiple odometry-like sensors
|
||||
% @author Stephen Williams
|
||||
|
||||
% A simple 2D pose slam example with multiple odometry-like measurements
|
||||
% - The robot initially faces along the X axis (horizontal, to the right in 2D)
|
||||
% - The robot moves forward at 2m/s
|
||||
% - We have measurements between each pose from multiple odometry sensors
|
||||
|
||||
clear all;
|
||||
import gtsam.*;
|
||||
|
||||
% Define the smoother lag (in seconds)
|
||||
lag = 2.0;
|
||||
|
||||
% Create a Concurrent Filter and Smoother
|
||||
concurrentFilter = ConcurrentBatchFilter;
|
||||
concurrentSmoother = ConcurrentBatchSmoother;
|
||||
|
||||
%% Create containers to store the factors and linearization points that
|
||||
% will be sent to the smoothers
|
||||
newFactors = NonlinearFactorGraph;
|
||||
newValues = Values;
|
||||
|
||||
%% Create a prior on the first pose, placing it at the origin
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3 ; 0.3 ; 0.1]);
|
||||
priorKey = uint64(0);
|
||||
newFactors.add(PriorFactorPose2(priorKey, priorMean, priorNoise));
|
||||
newValues.insert(priorKey, priorMean); % Initialize the first pose at the mean of the prior
|
||||
|
||||
%% Insert the prior factor into the filter
|
||||
concurrentFilter.update(newFactors, newValues);
|
||||
|
||||
%% Now, loop through several time steps, creating factors from different "sensors"
|
||||
% and adding them to the fixed-lag smoothers
|
||||
deltaT = 0.25;
|
||||
for time = deltaT : deltaT : 10.0
|
||||
|
||||
%% Initialize factor and values for this loop iteration
|
||||
newFactors = NonlinearFactorGraph;
|
||||
newValues = Values;
|
||||
|
||||
%% Define the keys related to this timestamp
|
||||
previousKey = uint64(1000 * (time-deltaT));
|
||||
currentKey = uint64(1000 * (time));
|
||||
|
||||
%% Add a guess for this pose to the new values
|
||||
% Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s]
|
||||
% {This is not a particularly good way to guess, but this is just an example}
|
||||
currentPose = Pose2(time * 2.0, 0.0, 0.0);
|
||||
newValues.insert(currentKey, currentPose);
|
||||
|
||||
%% Add odometry factors from two different sources with different error stats
|
||||
odometryMeasurement1 = Pose2(0.61, -0.08, 0.02);
|
||||
odometryNoise1 = noiseModel.Diagonal.Sigmas([0.1; 0.1; 0.05]);
|
||||
newFactors.add(BetweenFactorPose2(previousKey, currentKey, odometryMeasurement1, odometryNoise1));
|
||||
|
||||
odometryMeasurement2 = Pose2(0.47, 0.03, 0.01);
|
||||
odometryNoise2 = noiseModel.Isotropic.Sigma(3, 0.05);
|
||||
newFactors.add(BetweenFactorPose2(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
|
||||
|
||||
%% Unlike the fixed-lag versions, the concurrent filter implementation
|
||||
% requires the user to supply the specify which keys to move to the smoother
|
||||
oldKeys = KeyList;
|
||||
if time >= lag+deltaT
|
||||
oldKeys.push_back(uint64(1000 * (time-lag-deltaT)));
|
||||
end
|
||||
|
||||
%% Update the various inference engines
|
||||
concurrentFilter.update(newFactors, newValues, oldKeys);
|
||||
|
||||
%% Add a loop closure to the smoother at a particular time
|
||||
if time == 8.0
|
||||
% Now lets create a "loop closure" factor between some poses
|
||||
loopKey1 = uint64(1000 * (0.0));
|
||||
loopKey2 = uint64(1000 * (5.0));
|
||||
loopMeasurement = Pose2(9.5, 1.00, 0.00);
|
||||
loopNoise = noiseModel.Diagonal.Sigmas([0.5; 0.5; 0.25]);
|
||||
loopFactor = BetweenFactorPose2(loopKey1, loopKey2, loopMeasurement, loopNoise);
|
||||
% The state at 5.0s should have been transferred to the concurrent smoother at this point. Add the loop closure.
|
||||
smootherFactors = NonlinearFactorGraph;
|
||||
smootherFactors.push_back(loopFactor);
|
||||
concurrentSmoother.update(smootherFactors, Values());
|
||||
end
|
||||
|
||||
%% Manually synchronize the Concurrent Filter and Smoother every 1.0 s
|
||||
if mod(time, 1.0) < 0.01
|
||||
% Synchronize the Filter and Smoother
|
||||
concurrentSmoother.update();
|
||||
synchronize(concurrentFilter, concurrentSmoother);
|
||||
end
|
||||
|
||||
%% Print the filter optimized poses
|
||||
fprintf(1, 'Timestamp = %5.3f\n', time);
|
||||
filterResult = concurrentFilter.calculateEstimate;
|
||||
filterResult.at(currentKey).print('Concurrent Estimate: ');
|
||||
|
||||
%% Plot Covariance Ellipses
|
||||
cla;
|
||||
hold on
|
||||
filterMarginals = Marginals(concurrentFilter.getFactors, filterResult);
|
||||
plot2DTrajectory(filterResult, 'k*-', filterMarginals);
|
||||
|
||||
smootherGraph = concurrentSmoother.getFactors;
|
||||
if smootherGraph.size > 0
|
||||
smootherResult = concurrentSmoother.calculateEstimate;
|
||||
smootherMarginals = Marginals(smootherGraph, smootherResult);
|
||||
plot2DTrajectory(smootherResult, 'r*-', smootherMarginals);
|
||||
end
|
||||
|
||||
axis equal
|
||||
axis tight
|
||||
view(2)
|
||||
pause
|
||||
end
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue