Fix python test to not use add

release/4.3a0
Frank Dellaert 2023-01-06 23:23:12 -08:00
parent a46c53de3e
commit 8d96b3efb9
1 changed files with 13 additions and 10 deletions

View File

@ -18,6 +18,7 @@ import gtsam
import numpy as np import numpy as np
from gtsam.symbol_shorthand import C, X from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
from gtsam import BetweenFactorPoint3, noiseModel, PriorFactorPoint3, Point3
class TestHybridGaussianFactorGraph(GtsamTestCase): class TestHybridGaussianFactorGraph(GtsamTestCase):
@ -27,20 +28,22 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
nlfg = gtsam.HybridNonlinearFactorGraph() nlfg = gtsam.HybridNonlinearFactorGraph()
dk = gtsam.DiscreteKeys() dk = gtsam.DiscreteKeys()
dk.push_back((10, 2)) dk.push_back((10, 2))
nlfg.add(gtsam.BetweenFactorPoint3(1, 2, gtsam.Point3(1, 2, 3), gtsam.noiseModel.Diagonal.Variances([1, 1, 1]))) nlfg.push_back(BetweenFactorPoint3(1, 2, Point3(
nlfg.add( 1, 2, 3), noiseModel.Diagonal.Variances([1, 1, 1])))
gtsam.PriorFactorPoint3(2, gtsam.Point3(1, 2, 3), gtsam.noiseModel.Diagonal.Variances([0.5, 0.5, 0.5]))) nlfg.push_back(
PriorFactorPoint3(2, Point3(1, 2, 3),
noiseModel.Diagonal.Variances([0.5, 0.5, 0.5])))
nlfg.push_back( nlfg.push_back(
gtsam.MixtureFactor([1], dk, [ gtsam.MixtureFactor([1], dk, [
gtsam.PriorFactorPoint3(1, gtsam.Point3(0, 0, 0), PriorFactorPoint3(1, Point3(0, 0, 0),
gtsam.noiseModel.Unit.Create(3)), noiseModel.Unit.Create(3)),
gtsam.PriorFactorPoint3(1, gtsam.Point3(1, 2, 1), PriorFactorPoint3(1, Point3(1, 2, 1),
gtsam.noiseModel.Unit.Create(3)) noiseModel.Unit.Create(3))
])) ]))
nlfg.add(gtsam.DecisionTreeFactor((10, 2), "1 3")) nlfg.push_back(gtsam.DecisionTreeFactor((10, 2), "1 3"))
values = gtsam.Values() values = gtsam.Values()
values.insert_point3(1, gtsam.Point3(0, 0, 0)) values.insert_point3(1, Point3(0, 0, 0))
values.insert_point3(2, gtsam.Point3(2, 3, 1)) values.insert_point3(2, Point3(2, 3, 1))
hfg = nlfg.linearize(values) hfg = nlfg.linearize(values)
o = gtsam.Ordering() o = gtsam.Ordering()
o.push_back(1) o.push_back(1)