commit
8cc58686a1
|
@ -19,20 +19,6 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
LieMatrix::LieMatrix(size_t m, size_t n, ...)
|
||||
: Matrix(m,n) {
|
||||
va_list ap;
|
||||
va_start(ap, n);
|
||||
for(size_t i = 0; i < m; ++i) {
|
||||
for(size_t j = 0; j < n; ++j) {
|
||||
double value = va_arg(ap, double);
|
||||
(*this)(i,j) = value;
|
||||
}
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void LieMatrix::print(const std::string& name) const {
|
||||
gtsam::print(matrix(), name);
|
||||
|
|
|
@ -48,9 +48,6 @@ struct LieMatrix : public Matrix, public DerivedValue<LieMatrix> {
|
|||
LieMatrix(size_t m, size_t n, const double* const data) :
|
||||
Matrix(Eigen::Map<const Matrix>(data, m, n)) {}
|
||||
|
||||
/** Specify arguments directly, as in Matrix_() - always force these to be doubles */
|
||||
GTSAM_EXPORT LieMatrix(size_t m, size_t n, ...);
|
||||
|
||||
/// @}
|
||||
/// @name Testable interface
|
||||
/// @{
|
||||
|
|
|
@ -24,21 +24,10 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
LieVector::LieVector(size_t m, const double* const data)
|
||||
: Vector(Vector_(m,data))
|
||||
{
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
LieVector::LieVector(size_t m, ...)
|
||||
: Vector(m)
|
||||
{
|
||||
va_list ap;
|
||||
va_start(ap, m);
|
||||
for( size_t i = 0 ; i < m ; i++) {
|
||||
double value = va_arg(ap, double);
|
||||
(*this)(i) = value;
|
||||
}
|
||||
va_end(ap);
|
||||
for(size_t i = 0; i < m; i++)
|
||||
(*this)(i) = data[i];
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -44,9 +44,6 @@ struct LieVector : public Vector, public DerivedValue<LieVector> {
|
|||
/** constructor with size and initial data, row order ! */
|
||||
GTSAM_EXPORT LieVector(size_t m, const double* const data);
|
||||
|
||||
/** Specify arguments directly, as in Vector_() - always force these to be doubles */
|
||||
GTSAM_EXPORT LieVector(size_t m, ...);
|
||||
|
||||
/** get the underlying vector */
|
||||
Vector vector() const {
|
||||
return static_cast<Vector>(*this);
|
||||
|
|
|
@ -36,38 +36,6 @@ using namespace std;
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Matrix_( size_t m, size_t n, const double* const data) {
|
||||
MatrixRowMajor A(m,n);
|
||||
copy(data, data+m*n, A.data());
|
||||
return Matrix(A);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Matrix_( size_t m, size_t n, const Vector& v)
|
||||
{
|
||||
Matrix A(m,n);
|
||||
// column-wise copy
|
||||
for( size_t j = 0, k=0 ; j < n ; j++)
|
||||
for( size_t i = 0; i < m ; i++,k++)
|
||||
A(i,j) = v(k);
|
||||
return A;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Matrix_(size_t m, size_t n, ...) {
|
||||
Matrix A(m,n);
|
||||
va_list ap;
|
||||
va_start(ap, n);
|
||||
for( size_t i = 0 ; i < m ; i++)
|
||||
for( size_t j = 0 ; j < n ; j++) {
|
||||
double value = va_arg(ap, double);
|
||||
A(i,j) = value;
|
||||
}
|
||||
va_end(ap);
|
||||
return A;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix zeros( size_t m, size_t n ) {
|
||||
return Matrix::Zero(m,n);
|
||||
|
@ -211,17 +179,6 @@ void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, SubVec
|
|||
x += alpha * A.transpose() * e;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Vector_(const Matrix& A)
|
||||
{
|
||||
size_t m = A.rows(), n = A.cols();
|
||||
Vector v(m*n);
|
||||
for( size_t j = 0, k=0 ; j < n ; j++)
|
||||
for( size_t i = 0; i < m ; i++,k++)
|
||||
v(k) = A(i,j);
|
||||
return v;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void print(const Matrix& A, const string &s, ostream& stream) {
|
||||
size_t m = A.rows(), n = A.cols();
|
||||
|
|
|
@ -45,27 +45,6 @@ typedef Eigen::Matrix<double,6,6> Matrix6;
|
|||
typedef Eigen::Block<Matrix> SubMatrix;
|
||||
typedef Eigen::Block<const Matrix> ConstSubMatrix;
|
||||
|
||||
/**
|
||||
* constructor with size and initial data, row order !
|
||||
*/
|
||||
GTSAM_EXPORT Matrix Matrix_(size_t m, size_t n, const double* const data);
|
||||
|
||||
/**
|
||||
* constructor with size and vector data, column order !!!
|
||||
*/
|
||||
GTSAM_EXPORT Matrix Matrix_(size_t m, size_t n, const Vector& v);
|
||||
|
||||
/**
|
||||
* constructor from Vector yielding v.size()*1 vector
|
||||
*/
|
||||
inline Matrix Matrix_(const Vector& v) { return Matrix_(v.size(),1,v);}
|
||||
|
||||
/**
|
||||
* nice constructor, dangerous as number of arguments must be exactly right
|
||||
* and you have to pass doubles !!! always use 0.0 never 0
|
||||
*/
|
||||
GTSAM_EXPORT Matrix Matrix_(size_t m, size_t n, ...);
|
||||
|
||||
// Matlab-like syntax
|
||||
|
||||
/**
|
||||
|
@ -196,11 +175,6 @@ inline MATRIX prod(const MATRIX& A, const MATRIX&B) {
|
|||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* convert to column vector, column order !!!
|
||||
*/
|
||||
GTSAM_EXPORT Vector Vector_(const Matrix& A);
|
||||
|
||||
/**
|
||||
* print a matrix
|
||||
*/
|
||||
|
|
|
@ -79,33 +79,6 @@ void odprintf(const char *format, ...) {
|
|||
//#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Vector_( size_t m, const double* const data) {
|
||||
Vector A(m);
|
||||
copy(data, data+m, A.data());
|
||||
return A;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Vector_(size_t m, ...) {
|
||||
Vector v(m);
|
||||
va_list ap;
|
||||
va_start(ap, m);
|
||||
for( size_t i = 0 ; i < m ; i++) {
|
||||
double value = va_arg(ap, double);
|
||||
v(i) = value;
|
||||
}
|
||||
va_end(ap);
|
||||
return v;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Vector_(const std::vector<double>& d) {
|
||||
Vector v(d.size());
|
||||
copy(d.begin(), d.end(), v.data());
|
||||
return v;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool zero(const Vector& v) {
|
||||
bool result = true;
|
||||
|
|
|
@ -46,22 +46,6 @@ typedef Eigen::VectorBlock<const Vector> ConstSubVector;
|
|||
*/
|
||||
GTSAM_EXPORT void odprintf(const char *format, ...);
|
||||
|
||||
/**
|
||||
* constructor with size and initial data, row order !
|
||||
*/
|
||||
GTSAM_EXPORT Vector Vector_( size_t m, const double* const data);
|
||||
|
||||
/**
|
||||
* nice constructor, dangerous as number of arguments must be exactly right
|
||||
* and you have to pass doubles !!! always use 0.0 never 0
|
||||
*/
|
||||
GTSAM_EXPORT Vector Vector_(size_t m, ...);
|
||||
|
||||
/**
|
||||
* Create a numeric vector from an STL vector of doubles
|
||||
*/
|
||||
GTSAM_EXPORT Vector Vector_(const std::vector<double>& data);
|
||||
|
||||
/**
|
||||
* Create vector initialized to a constant value
|
||||
* @param n is the size of the vector
|
||||
|
|
|
@ -59,7 +59,7 @@ namespace gtsam {
|
|||
|
||||
/** global functions for converting to a LieVector for use with numericalDerivative */
|
||||
inline LieVector makeLieVector(const Vector& v) { return LieVector(v); }
|
||||
inline LieVector makeLieVectorD(double d) { return LieVector(Vector_(1, d)); }
|
||||
inline LieVector makeLieVectorD(double d) { return LieVector((Vector) (Vector(1) << d)); }
|
||||
|
||||
/**
|
||||
* Numerically compute gradient of scalar function
|
||||
|
|
|
@ -39,20 +39,17 @@ TEST( LieMatrix, construction ) {
|
|||
TEST( LieMatrix, other_constructors ) {
|
||||
Matrix init = (Matrix(2,2) << 10.0,20.0, 30.0,40.0);
|
||||
LieMatrix exp(init);
|
||||
LieMatrix a(2,2,10.0,20.0,30.0,40.0);
|
||||
double data[] = {10,30,20,40};
|
||||
LieMatrix b(2,2,data);
|
||||
EXPECT(assert_equal(exp, a));
|
||||
EXPECT(assert_equal(exp, b));
|
||||
EXPECT(assert_equal(b, a));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(LieMatrix, retract) {
|
||||
LieMatrix init(2,2, 1.0,2.0,3.0,4.0);
|
||||
Vector update = Vector_(4, 3.0, 4.0, 6.0, 7.0);
|
||||
LieMatrix init((Matrix(2,2) << 1.0,2.0,3.0,4.0));
|
||||
Vector update = (Vector(4) << 3.0, 4.0, 6.0, 7.0);
|
||||
|
||||
LieMatrix expected(2,2, 4.0, 6.0, 9.0, 11.0);
|
||||
LieMatrix expected((Matrix(2,2) << 4.0, 6.0, 9.0, 11.0));
|
||||
LieMatrix actual = init.retract(update);
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -63,7 +60,7 @@ TEST(LieMatrix, retract) {
|
|||
EXPECT(assert_equal(expectedUpdate, actualUpdate));
|
||||
|
||||
Vector expectedLogmap = (Vector(4) << 1, 2, 3, 4);
|
||||
Vector actualLogmap = LieMatrix::Logmap(LieMatrix(2,2, 1.0, 2.0, 3.0, 4.0));
|
||||
Vector actualLogmap = LieMatrix::Logmap(LieMatrix((Matrix(2,2) << 1.0, 2.0, 3.0, 4.0)));
|
||||
EXPECT(assert_equal(expectedLogmap, actualLogmap));
|
||||
}
|
||||
|
||||
|
|
|
@ -42,7 +42,7 @@ TEST( testLieScalar, construction ) {
|
|||
TEST( testLieScalar, localCoordinates ) {
|
||||
LieScalar lie1(1.), lie2(3.);
|
||||
|
||||
EXPECT(assert_equal(Vector_(1, 2.), lie1.localCoordinates(lie2)));
|
||||
EXPECT(assert_equal((Vector)(Vector(1) << 2), lie1.localCoordinates(lie2)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -39,14 +39,9 @@ TEST( testLieVector, construction ) {
|
|||
TEST( testLieVector, other_constructors ) {
|
||||
Vector init = (Vector(2) << 10.0, 20.0);
|
||||
LieVector exp(init);
|
||||
LieVector a(2,10.0,20.0);
|
||||
double data[] = {10,20};
|
||||
LieVector b(2,data);
|
||||
LieVector c(2.3), c_exp(LieVector(1, 2.3));
|
||||
EXPECT(assert_equal(exp, a));
|
||||
EXPECT(assert_equal(exp, b));
|
||||
EXPECT(assert_equal(b, a));
|
||||
EXPECT(assert_equal(c_exp, c));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -43,18 +43,6 @@ TEST( matrix, constructor_data )
|
|||
EQUALITY(A,B);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/*
|
||||
TEST( matrix, constructor_vector )
|
||||
{
|
||||
double data[] = { -5, 3, 0, -5 };
|
||||
Matrix A = Matrix_(2, 2, -5, 3, 0, -5);
|
||||
Vector v(4);
|
||||
copy(data, data + 4, v.data());
|
||||
Matrix B = Matrix_(2, 2, v); // this one is column order !
|
||||
EQUALITY(A,trans(B));
|
||||
}
|
||||
*/
|
||||
/* ************************************************************************* */
|
||||
TEST( matrix, Matrix_ )
|
||||
{
|
||||
|
|
|
@ -48,7 +48,8 @@ double f2(const LieVector& x) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian2) {
|
||||
LieVector center(2, 0.5, 1.0);
|
||||
Vector v_center = (Vector(2) << 0.5, 1.0);
|
||||
LieVector center(v_center);
|
||||
|
||||
Matrix expected = (Matrix(2,2) <<
|
||||
-cos(center(1))*sin(center(0)), -sin(center(1))*cos(center(0)),
|
||||
|
@ -67,7 +68,9 @@ double f3(const LieVector& x1, const LieVector& x2) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian211) {
|
||||
LieVector center1(1, 1.0), center2(1, 5.0);
|
||||
Vector v_center1 = (Vector(1) << 1.0);
|
||||
Vector v_center2 = (Vector(1) << 5.0);
|
||||
LieVector center1(v_center1), center2(v_center2);
|
||||
|
||||
Matrix expected11 = (Matrix(1, 1) << -sin(center1(0))*cos(center2(0)));
|
||||
Matrix actual11 = numericalHessian211(f3, center1, center2);
|
||||
|
@ -90,7 +93,11 @@ double f4(const LieVector& x, const LieVector& y, const LieVector& z) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testNumericalDerivative, numericalHessian311) {
|
||||
LieVector center1(1, 1.0), center2(1, 2.0), center3(1, 3.0);
|
||||
Vector v_center1 = (Vector(1) << 1.0);
|
||||
Vector v_center2 = (Vector(1) << 2.0);
|
||||
Vector v_center3 = (Vector(1) << 3.0);
|
||||
LieVector center1(v_center1), center2(v_center2), center3(v_center3);
|
||||
|
||||
double x = center1(0), y = center2(0), z = center3(0);
|
||||
Matrix expected11 = (Matrix(1, 1) << -sin(x)*cos(y)*z*z);
|
||||
Matrix actual11 = numericalHessian311(f4, center1, center2, center3);
|
||||
|
|
|
@ -23,15 +23,6 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( TestVector, Vector_variants )
|
||||
{
|
||||
Vector a = (Vector(2) << 10.0,20.0);
|
||||
double data[] = {10,20};
|
||||
Vector b = Vector_(2, data);
|
||||
EXPECT(assert_equal(a, b));
|
||||
}
|
||||
|
||||
namespace {
|
||||
/* ************************************************************************* */
|
||||
template<typename Derived>
|
||||
|
|
|
@ -172,7 +172,7 @@ public:
|
|||
static inline Point2 Expmap(const Vector& v) { return Point2(v); }
|
||||
|
||||
/// Log map around identity - just return the Point2 as a vector
|
||||
static inline Vector Logmap(const Point2& dp) { return Vector_(2, dp.x(), dp.y()); }
|
||||
static inline Vector Logmap(const Point2& dp) { return (Vector(2) << dp.x(), dp.y()); }
|
||||
|
||||
/// @}
|
||||
/// @name Vector Space
|
||||
|
|
|
@ -98,7 +98,7 @@ Vector Pose3::adjointTranspose(const Vector& xi, const Vector& y,
|
|||
/* ************************************************************************* */
|
||||
Matrix6 Pose3::dExpInv_exp(const Vector& xi) {
|
||||
// Bernoulli numbers, from Wikipedia
|
||||
static const Vector B = Vector_(9, 1.0, -1.0 / 2.0, 1. / 6., 0.0, -1.0 / 30.0,
|
||||
static const Vector B = (Vector(9) << 1.0, -1.0 / 2.0, 1. / 6., 0.0, -1.0 / 30.0,
|
||||
0.0, 1.0 / 42.0, 0.0, -1.0 / 30);
|
||||
static const int N = 5; // order of approximation
|
||||
Matrix res = I6;
|
||||
|
|
|
@ -170,7 +170,7 @@ namespace gtsam {
|
|||
|
||||
///Log map at identity - return the canonical coordinates of this rotation
|
||||
static inline Vector Logmap(const Rot2& r) {
|
||||
return Vector_(1, r.theta());
|
||||
return (Vector(1) << r.theta());
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
|
|
@ -194,7 +194,7 @@ namespace gtsam {
|
|||
* @return incremental rotation matrix
|
||||
*/
|
||||
static Rot3 rodriguez(double wx, double wy, double wz)
|
||||
{ return rodriguez(Vector_(3,wx,wy,wz));}
|
||||
{ return rodriguez((Vector(3) << wx, wy, wz));}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
|
|
@ -185,7 +185,7 @@ Sphere2 Sphere2::retract(const Vector& v, Sphere2::CoordinatesMode mode) const {
|
|||
double alpha = p.transpose() * q;
|
||||
assert(alpha != 0.0);
|
||||
Matrix coeffs = (B.transpose() * q) / alpha;
|
||||
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
|
||||
Vector result = (Vector(2) << coeffs(0, 0), coeffs(1, 0));
|
||||
return result;
|
||||
} else {
|
||||
assert (false);
|
||||
|
|
|
@ -36,7 +36,7 @@ TEST( Cal3DS2, uncalibrate)
|
|||
double g = 1+k[0]*r+k[1]*r*r ;
|
||||
double tx = 2*k[2]*p.x()*p.y() + k[3]*(r+2*p.x()*p.x()) ;
|
||||
double ty = k[2]*(r+2*p.y()*p.y()) + 2*k[3]*p.x()*p.y() ;
|
||||
Vector v_hat = Vector_(3, g*p.x() + tx, g*p.y() + ty, 1.0) ;
|
||||
Vector v_hat = (Vector(3) << g*p.x() + tx, g*p.y() + ty, 1.0) ;
|
||||
Vector v_i = K.K() * v_hat ;
|
||||
Point2 p_i(v_i(0)/v_i(2), v_i(1)/v_i(2)) ;
|
||||
Point2 q = K.uncalibrate(p);
|
||||
|
|
|
@ -41,7 +41,7 @@ TEST(Point3, Lie) {
|
|||
EXPECT(assert_equal(eye(3), H2));
|
||||
|
||||
EXPECT(assert_equal(Point3(5, 7, 9), p1.retract((Vector(3) << 4., 5., 6.))));
|
||||
EXPECT(assert_equal(Vector_(3, 3., 3., 3.), p1.localCoordinates(p2)));
|
||||
EXPECT(assert_equal((Vector)(Vector(3) << 3.,3.,3.), p1.localCoordinates(p2)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -96,7 +96,7 @@ TEST(Rot2, logmap)
|
|||
{
|
||||
Rot2 rot0(Rot2::fromAngle(M_PI/2.0));
|
||||
Rot2 rot(Rot2::fromAngle(M_PI));
|
||||
Vector expected = Vector_(1, M_PI/2.0);
|
||||
Vector expected = (Vector(1) << M_PI/2.0);
|
||||
Vector actual = rot0.localCoordinates(rot);
|
||||
CHECK(assert_equal(expected, actual));
|
||||
}
|
||||
|
|
|
@ -213,9 +213,9 @@ inline static Vector randomVector(const Vector& minLimits,
|
|||
TEST(Sphere2, localCoordinates_retract) {
|
||||
|
||||
size_t numIterations = 10000;
|
||||
Vector minSphereLimit = Vector_(3, -1.0, -1.0, -1.0), maxSphereLimit =
|
||||
Vector_(3, 1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = Vector_(2, -1.0, -1.0), maxXiLimit = Vector_(2, 1.0, 1.0);
|
||||
Vector minSphereLimit = (Vector(3) << -1.0, -1.0, -1.0), maxSphereLimit =
|
||||
(Vector(3) << 1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = (Vector(2) << -1.0, -1.0), maxXiLimit = (Vector(2) << 1.0, 1.0);
|
||||
for (size_t i = 0; i < numIterations; i++) {
|
||||
|
||||
// Sleep for the random number generator (TODO?: Better create all of them first).
|
||||
|
@ -243,9 +243,9 @@ TEST(Sphere2, localCoordinates_retract) {
|
|||
TEST(Sphere2, localCoordinates_retract_expmap) {
|
||||
|
||||
size_t numIterations = 10000;
|
||||
Vector minSphereLimit = Vector_(3, -1.0, -1.0, -1.0), maxSphereLimit =
|
||||
Vector_(3, 1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = Vector_(2, -M_PI, -M_PI), maxXiLimit = Vector_(2, M_PI, M_PI);
|
||||
Vector minSphereLimit = (Vector(3) << -1.0, -1.0, -1.0), maxSphereLimit =
|
||||
(Vector(3) << 1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = (Vector(2) << -M_PI, -M_PI), maxXiLimit = (Vector(2) << M_PI, M_PI);
|
||||
for (size_t i = 0; i < numIterations; i++) {
|
||||
|
||||
// Sleep for the random number generator (TODO?: Better create all of them first).
|
||||
|
@ -288,7 +288,7 @@ TEST(Sphere2, localCoordinates_retract_expmap) {
|
|||
// EXPECT(assert_equal(expected,actual1));
|
||||
// EXPECT(assert_equal(expected,actual2));
|
||||
//
|
||||
// Matrix expectedH1 = Matrix_(3,3,
|
||||
// Matrix expectedH1 = (Matrix(3,3) <<
|
||||
// 0.0,-1.0,-2.0,
|
||||
// 1.0, 0.0,-2.0,
|
||||
// 0.0, 0.0,-1.0
|
||||
|
@ -299,7 +299,7 @@ TEST(Sphere2, localCoordinates_retract_expmap) {
|
|||
// // Assert H1 = -AdjointMap(between(p2,p1)) as in doc/math.lyx
|
||||
// EXPECT(assert_equal(-gT2.between(gT1).AdjointMap(),actualH1));
|
||||
//
|
||||
// Matrix expectedH2 = Matrix_(3,3,
|
||||
// Matrix expectedH2 = (Matrix(3,3) <<
|
||||
// 1.0, 0.0, 0.0,
|
||||
// 0.0, 1.0, 0.0,
|
||||
// 0.0, 0.0, 1.0
|
||||
|
|
|
@ -138,7 +138,7 @@ int main()
|
|||
|
||||
// create a random pose:
|
||||
double x = 4.0, y = 2.0, r = 0.3;
|
||||
Vector v = Vector_(3,x,y,r);
|
||||
Vector v = (Vector(3) << x, y, r);
|
||||
Pose2 X = Pose2(3,2,0.4), X2 = X.retract(v), X3(5,6,0.3);
|
||||
|
||||
TEST(Expmap, Pose2::Expmap(v));
|
||||
|
|
|
@ -95,7 +95,7 @@ int main()
|
|||
// create a random direction:
|
||||
double norm=sqrt(16.0+4.0);
|
||||
double x=4.0/norm, y=2.0/norm;
|
||||
Vector v = Vector_(2,x,y);
|
||||
Vector v = (Vector(2) << x, y);
|
||||
Rot2 R = Rot2(0.4), R2 = R.retract(v), R3(0.6);
|
||||
|
||||
TEST(Rot2_Expmap, Rot2::Expmap(v));
|
||||
|
|
|
@ -39,7 +39,7 @@ int main()
|
|||
// create a random direction:
|
||||
double norm=sqrt(1.0+16.0+4.0);
|
||||
double x=1.0/norm, y=4.0/norm, z=2.0/norm;
|
||||
Vector v = Vector_(3,x,y,z);
|
||||
Vector v = (Vector(3) << x, y, z);
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.4, 0.2), R2 = R.retract(v);
|
||||
|
||||
TEST("Rodriguez formula given axis angle", Rot3::rodriguez(v,0.001))
|
||||
|
|
|
@ -49,15 +49,15 @@ namespace gtsam {
|
|||
* Example:
|
||||
* \code
|
||||
VectorValues values;
|
||||
values.insert(3, Vector_(3, 1.0, 2.0, 3.0));
|
||||
values.insert(4, Vector_(2, 4.0, 5.0));
|
||||
values.insert(0, Vector_(4, 6.0, 7.0, 8.0, 9.0));
|
||||
values.insert(3, (Vector(3) << 1.0, 2.0, 3.0));
|
||||
values.insert(4, (Vector(2) << 4.0, 5.0));
|
||||
values.insert(0, (Vector(4) << 6.0, 7.0, 8.0, 9.0));
|
||||
|
||||
// Prints [ 3.0 4.0 ]
|
||||
gtsam::print(values[1]);
|
||||
|
||||
// Prints [ 8.0 9.0 ]
|
||||
values[1] = Vector_(2, 8.0, 9.0);
|
||||
values[1] = (Vector(2) << 8.0, 9.0);
|
||||
gtsam::print(values[1]);
|
||||
\endcode
|
||||
*
|
||||
|
|
|
@ -24,7 +24,7 @@ const double tol = 1e-5;
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(testSampler, basic) {
|
||||
Vector sigmas = Vector_(3, 1.0, 0.1, 0.0);
|
||||
Vector sigmas = (Vector(3) << 1.0, 0.1, 0.0);
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(sigmas);
|
||||
char seed = 'A';
|
||||
Sampler sampler1(model, seed), sampler2(model, 1), sampler3(model, 1);
|
||||
|
|
|
@ -113,7 +113,7 @@ namespace imuBias {
|
|||
//
|
||||
// return measurement - biasGyro_ - w_earth_rate_I;
|
||||
//
|
||||
//// Vector bias_gyro_temp(Vector_(3, -bias_gyro_(0), bias_gyro_(1), bias_gyro_(2)));
|
||||
//// Vector bias_gyro_temp((Vector(3) << -bias_gyro_(0), bias_gyro_(1), bias_gyro_(2)));
|
||||
//// return measurement - bias_gyro_temp - R_G_to_I * w_earth_rate_G;
|
||||
// }
|
||||
|
||||
|
|
|
@ -168,9 +168,9 @@ TEST( CombinedImuFactor, ErrorWithBiases )
|
|||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
|
|
@ -167,9 +167,9 @@ TEST( ImuFactor, Error )
|
|||
// Linearization point
|
||||
imuBias::ConstantBias bias; // Bias
|
||||
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
@ -238,16 +238,16 @@ TEST( ImuFactor, ErrorWithBiases )
|
|||
// Linearization point
|
||||
// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
@ -445,9 +445,9 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
//{
|
||||
// // Linearization point
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
|
||||
//
|
||||
// // Pre-integrator
|
||||
|
@ -501,9 +501,9 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
|
|||
|
||||
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
|
||||
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1(3, 0.5, 0.0, 0.0);
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2(3, 0.5, 0.0, 0.0);
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
|
|
|
@ -122,8 +122,8 @@ struct GTSAM_EXPORT ISAM2Params {
|
|||
* entries would be added with:
|
||||
* \code
|
||||
FastMap<char,Vector> thresholds;
|
||||
thresholds['x'] = Vector_(6, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5); // 0.1 rad rotation threshold, 0.5 m translation threshold
|
||||
thresholds['l'] = Vector_(3, 1.0, 1.0, 1.0); // 1.0 m landmark position threshold
|
||||
thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5); // 0.1 rad rotation threshold, 0.5 m translation threshold
|
||||
thresholds['l'] = (Vector(3) << 1.0, 1.0, 1.0); // 1.0 m landmark position threshold
|
||||
params.relinearizeThreshold = thresholds;
|
||||
\endcode
|
||||
*/
|
||||
|
|
|
@ -19,7 +19,7 @@ using namespace std;
|
|||
using namespace boost::assign;
|
||||
using namespace gtsam;
|
||||
|
||||
const gtsam::noiseModel::Diagonal::shared_ptr diag_model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 1.0, 1.0));
|
||||
const gtsam::noiseModel::Diagonal::shared_ptr diag_model2 = noiseModel::Diagonal::Sigmas((Vector(2) << 1.0, 1.0));
|
||||
const double tol = 1e-5;
|
||||
|
||||
gtsam::Key l1 = 101, l2 = 102, x1 = 1, x2 = 2;
|
||||
|
|
|
@ -65,7 +65,8 @@ public:
|
|||
TEST( Values, equals1 )
|
||||
{
|
||||
Values expected;
|
||||
LieVector v(3, 5.0, 6.0, 7.0);
|
||||
LieVector v((Vector(3) << 5.0, 6.0, 7.0));
|
||||
|
||||
expected.insert(key1,v);
|
||||
Values actual;
|
||||
actual.insert(key1,v);
|
||||
|
@ -76,8 +77,9 @@ TEST( Values, equals1 )
|
|||
TEST( Values, equals2 )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 5.0, 6.0, 8.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 5.0, 6.0, 8.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -88,8 +90,9 @@ TEST( Values, equals2 )
|
|||
TEST( Values, equals_nan )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, inf, inf, inf);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << inf, inf, inf));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg2.insert(key1, v2);
|
||||
CHECK(!cfg1.equals(cfg2));
|
||||
|
@ -100,10 +103,11 @@ TEST( Values, equals_nan )
|
|||
TEST( Values, insert_good )
|
||||
{
|
||||
Values cfg1, cfg2, expected;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
LieVector v3((Vector(3) << 2.0, 4.0, 3.0));
|
||||
LieVector v4((Vector(3) << 8.0, 3.0, 7.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key3, v4);
|
||||
|
@ -121,10 +125,11 @@ TEST( Values, insert_good )
|
|||
TEST( Values, insert_bad )
|
||||
{
|
||||
Values cfg1, cfg2;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v3(3, 2.0, 4.0, 3.0);
|
||||
LieVector v4(3, 8.0, 3.0, 7.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
LieVector v3((Vector(3) << 2.0, 4.0, 3.0));
|
||||
LieVector v4((Vector(3) << 8.0, 3.0, 7.0));
|
||||
|
||||
cfg1.insert(key1, v1);
|
||||
cfg1.insert(key2, v2);
|
||||
cfg2.insert(key2, v3);
|
||||
|
@ -137,8 +142,8 @@ TEST( Values, insert_bad )
|
|||
TEST( Values, update_element )
|
||||
{
|
||||
Values cfg;
|
||||
LieVector v1(3, 5.0, 6.0, 7.0);
|
||||
LieVector v2(3, 8.0, 9.0, 1.0);
|
||||
LieVector v1((Vector(3) << 5.0, 6.0, 7.0));
|
||||
LieVector v2((Vector(3) << 8.0, 9.0, 1.0));
|
||||
|
||||
cfg.insert(key1, v1);
|
||||
CHECK(cfg.size() == 1);
|
||||
|
@ -181,8 +186,8 @@ TEST(Values, basic_functions)
|
|||
//TEST(Values, dim_zero)
|
||||
//{
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(2, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
// config0.insert(key1, LieVector((Vector(2) << 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0));
|
||||
// LONGS_EQUAL(5, config0.dim());
|
||||
//
|
||||
// VectorValues expected;
|
||||
|
@ -195,16 +200,16 @@ TEST(Values, basic_functions)
|
|||
TEST(Values, expmap_a)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues increment = pair_list_of<Key, Vector>
|
||||
(key1, (Vector(3) << 1.0, 1.1, 1.2))
|
||||
(key2, (Vector(3) << 1.3, 1.4, 1.5));
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
expected.insert(key1, LieVector((Vector(3) << 2.0, 3.1, 4.2)));
|
||||
expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
}
|
||||
|
@ -213,15 +218,15 @@ TEST(Values, expmap_a)
|
|||
TEST(Values, expmap_b)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues increment = pair_list_of<Key, Vector>
|
||||
(key2, (Vector(3) << 1.3, 1.4, 1.5));
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
expected.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
|
||||
CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
}
|
||||
|
@ -230,16 +235,16 @@ TEST(Values, expmap_b)
|
|||
//TEST(Values, expmap_c)
|
||||
//{
|
||||
// Values config0;
|
||||
// config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
// config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
// config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
// config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
//
|
||||
// Vector increment = LieVector(6,
|
||||
// 1.0, 1.1, 1.2,
|
||||
// 1.3, 1.4, 1.5);
|
||||
//
|
||||
// Values expected;
|
||||
// expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
// expected.insert(key2, LieVector(3, 6.3, 7.4, 8.5));
|
||||
// expected.insert(key1, LieVector((Vector(3) << 2.0, 3.1, 4.2)));
|
||||
// expected.insert(key2, LieVector((Vector(3) << 6.3, 7.4, 8.5)));
|
||||
//
|
||||
// CHECK(assert_equal(expected, config0.retract(increment)));
|
||||
//}
|
||||
|
@ -248,8 +253,8 @@ TEST(Values, expmap_b)
|
|||
TEST(Values, expmap_d)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
config0.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
config0.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
//config0.print("config0");
|
||||
CHECK(equal(config0, config0));
|
||||
CHECK(config0.equals(config0));
|
||||
|
@ -266,8 +271,8 @@ TEST(Values, expmap_d)
|
|||
TEST(Values, localCoordinates)
|
||||
{
|
||||
Values valuesA;
|
||||
valuesA.insert(key1, LieVector(3, 1.0, 2.0, 3.0));
|
||||
valuesA.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
valuesA.insert(key1, LieVector((Vector(3) << 1.0, 2.0, 3.0)));
|
||||
valuesA.insert(key2, LieVector((Vector(3) << 5.0, 6.0, 7.0)));
|
||||
|
||||
VectorValues expDelta = pair_list_of<Key, Vector>
|
||||
(key1, (Vector(3) << 0.1, 0.2, 0.3))
|
||||
|
@ -314,17 +319,17 @@ TEST(Values, exists_)
|
|||
TEST(Values, update)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(1, 1.));
|
||||
config0.insert(key2, LieVector(1, 2.));
|
||||
config0.insert(key1, LieVector((Vector(1) << 1.)));
|
||||
config0.insert(key2, LieVector((Vector(1) << 2.)));
|
||||
|
||||
Values superset;
|
||||
superset.insert(key1, LieVector(1, -1.));
|
||||
superset.insert(key2, LieVector(1, -2.));
|
||||
superset.insert(key1, LieVector((Vector(1) << -1.)));
|
||||
superset.insert(key2, LieVector((Vector(1) << -2.)));
|
||||
config0.update(superset);
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(1, -1.));
|
||||
expected.insert(key2, LieVector(1, -2.));
|
||||
expected.insert(key1, LieVector((Vector(1) << -1.)));
|
||||
expected.insert(key2, LieVector((Vector(1) << -2.)));
|
||||
CHECK(assert_equal(expected,config0));
|
||||
}
|
||||
|
||||
|
|
|
@ -96,7 +96,7 @@ namespace gtsam {
|
|||
Vector e1 = Rot::Logmap(measuredBearing_.between(y1));
|
||||
|
||||
double y2 = pose.range(point, H21_, H22_);
|
||||
Vector e2 = Vector_(1, y2 - measuredRange_);
|
||||
Vector e2 = (Vector(1) << y2 - measuredRange_);
|
||||
|
||||
if (H1) *H1 = gtsam::stack(2, &H11, &H21);
|
||||
if (H2) *H2 = gtsam::stack(2, &H12, &H22);
|
||||
|
|
|
@ -73,7 +73,7 @@ namespace gtsam {
|
|||
} else {
|
||||
hx = pose.range(point, H1, H2);
|
||||
}
|
||||
return Vector_(1, hx - measured_);
|
||||
return (Vector(1) << hx - measured_);
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
|
|
|
@ -110,7 +110,7 @@ TEST( GeneralSFMFactor, error ) {
|
|||
Pose3 x1(R,t1);
|
||||
values.insert(X(1), GeneralCamera(x1));
|
||||
Point3 l1; values.insert(L(1), l1);
|
||||
EXPECT(assert_equal((Vector(2) << -3.0, 0.0), factor->unwhitenedError(values)));
|
||||
EXPECT(assert_equal(((Vector) (Vector(2) << -3.0, 0.0)), factor->unwhitenedError(values)));
|
||||
}
|
||||
|
||||
static const double baseline = 5.0 ;
|
||||
|
|
|
@ -45,23 +45,6 @@ public:
|
|||
std::copy(values, values+N, this->data());
|
||||
}
|
||||
|
||||
/**
|
||||
* nice constructor, dangerous as number of arguments must be exactly right
|
||||
* and you have to pass doubles !!! always use 0.0 never 0
|
||||
*
|
||||
* NOTE: this will throw warnings/explode if there is no argument
|
||||
* before the variadic section, so there is a meaningless size argument.
|
||||
*/
|
||||
FixedVector(size_t n, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, n);
|
||||
for(size_t i = 0 ; i < N ; i++) {
|
||||
double value = va_arg(ap, double);
|
||||
(*this)(i) = value;
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create vector initialized to a constant value
|
||||
* @param value constant value
|
||||
|
|
|
@ -28,7 +28,7 @@ static const double tol = 1e-9;
|
|||
/* ************************************************************************* */
|
||||
TEST( testFixedVector, conversions ) {
|
||||
double data1[] = {1.0, 2.0, 3.0};
|
||||
Vector v1 = Vector_(3, data1);
|
||||
Vector v1 = (Vector(3) << data1[0], data1[1], data1[2]);
|
||||
TestVector3 fv1(v1), fv2(data1);
|
||||
|
||||
Vector actFv2(fv2);
|
||||
|
@ -37,7 +37,7 @@ TEST( testFixedVector, conversions ) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST( testFixedVector, variable_constructor ) {
|
||||
TestVector3 act(3, 1.0, 2.0, 3.0);
|
||||
TestVector3 act((Vector(3) << 1.0, 2.0, 3.0));
|
||||
EXPECT_DOUBLES_EQUAL(1.0, act(0), tol);
|
||||
EXPECT_DOUBLES_EQUAL(2.0, act(1), tol);
|
||||
EXPECT_DOUBLES_EQUAL(3.0, act(2), tol);
|
||||
|
@ -45,8 +45,9 @@ TEST( testFixedVector, variable_constructor ) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST( testFixedVector, equals ) {
|
||||
TestVector3 vec1(3, 1.0, 2.0, 3.0), vec2(3, 1.0, 2.0, 3.0), vec3(3, 2.0, 3.0, 4.0);
|
||||
TestVector5 vec4(5, 1.0, 2.0, 3.0, 4.0, 5.0);
|
||||
TestVector3 vec1((Vector(3) << 1.0, 2.0, 3.0)), vec2((Vector(3) << 1.0, 2.0, 3.0)),
|
||||
vec3((Vector(3) << 2.0, 3.0, 4.0));
|
||||
TestVector5 vec4((Vector(5) << 1.0, 2.0, 3.0, 4.0, 5.0));
|
||||
|
||||
EXPECT(assert_equal(vec1, vec1, tol));
|
||||
EXPECT(assert_equal(vec1, vec2, tol));
|
||||
|
@ -60,23 +61,23 @@ TEST( testFixedVector, equals ) {
|
|||
/* ************************************************************************* */
|
||||
TEST( testFixedVector, static_constructors ) {
|
||||
TestVector3 actZero = TestVector3::zero();
|
||||
TestVector3 expZero(3, 0.0, 0.0, 0.0);
|
||||
TestVector3 expZero((Vector(3) << 0.0, 0.0, 0.0));
|
||||
EXPECT(assert_equal(expZero, actZero, tol));
|
||||
|
||||
TestVector3 actOnes = TestVector3::ones();
|
||||
TestVector3 expOnes(3, 1.0, 1.0, 1.0);
|
||||
TestVector3 expOnes((Vector(3) << 1.0, 1.0, 1.0));
|
||||
EXPECT(assert_equal(expOnes, actOnes, tol));
|
||||
|
||||
TestVector3 actRepeat = TestVector3::repeat(2.3);
|
||||
TestVector3 expRepeat(3, 2.3, 2.3, 2.3);
|
||||
TestVector3 expRepeat((Vector(3) << 2.3, 2.3, 2.3));
|
||||
EXPECT(assert_equal(expRepeat, actRepeat, tol));
|
||||
|
||||
TestVector3 actBasis = TestVector3::basis(1);
|
||||
TestVector3 expBasis(3, 0.0, 1.0, 0.0);
|
||||
TestVector3 expBasis((Vector(3) << 0.0, 1.0, 0.0));
|
||||
EXPECT(assert_equal(expBasis, actBasis, tol));
|
||||
|
||||
TestVector3 actDelta = TestVector3::delta(1, 2.3);
|
||||
TestVector3 expDelta(3, 0.0, 2.3, 0.0);
|
||||
TestVector3 expDelta((Vector(3) << 0.0, 2.3, 0.0));
|
||||
EXPECT(assert_equal(expDelta, actDelta, tol));
|
||||
}
|
||||
|
||||
|
|
|
@ -69,7 +69,7 @@ BearingS2 BearingS2::retract(const Vector& v) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Vector BearingS2::localCoordinates(const BearingS2& x) const {
|
||||
return Vector_(2, azimuth_.localCoordinates(x.azimuth_)(0),
|
||||
return (Vector(2) << azimuth_.localCoordinates(x.azimuth_)(0),
|
||||
elevation_.localCoordinates(x.elevation_)(0));
|
||||
}
|
||||
|
||||
|
|
|
@ -166,7 +166,7 @@ public:
|
|||
gtsam::Point3 ray = pw - pt;
|
||||
double theta = atan2(ray.y(), ray.x()); // longitude
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
return std::make_pair(gtsam::LieVector(5, pt.x(),pt.y(),pt.z(), theta, phi),
|
||||
return std::make_pair(gtsam::LieVector((Vector(5) << pt.x(),pt.y(),pt.z(), theta, phi)),
|
||||
gtsam::LieScalar(1./depth));
|
||||
}
|
||||
|
||||
|
|
|
@ -145,7 +145,7 @@ SimPolygon2D SimPolygon2D::randomTriangle(
|
|||
// extend line by random dist and angle to get BC
|
||||
double dAB = randomDistance(mean_side_len, sigma_side_len, min_side_len);
|
||||
double tABC = randomAngle().theta();
|
||||
Pose2 xB = xA.retract(Vector_(3, dAB, 0.0, tABC));
|
||||
Pose2 xB = xA.retract((Vector(3) << dAB, 0.0, tABC));
|
||||
|
||||
// extend from B to find C
|
||||
double dBC = randomDistance(mean_side_len, sigma_side_len, min_side_len);
|
||||
|
|
|
@ -128,7 +128,7 @@ std::pair<Pose2, bool> moveWithBounce(const Pose2& cur_pose, double step_size,
|
|||
|
||||
// calculate angle to change by
|
||||
Rot2 dtheta = Rot2::fromAngle(angle_drift.sample()(0) + bias.theta());
|
||||
Pose2 test_pose = cur_pose.retract(Vector_(3, step_size, 0.0, Rot2::Logmap(dtheta)(0)));
|
||||
Pose2 test_pose = cur_pose.retract((Vector(3) << step_size, 0.0, Rot2::Logmap(dtheta)(0)));
|
||||
|
||||
// create a segment to use for intersection checking
|
||||
// find the closest intersection
|
||||
|
|
|
@ -29,7 +29,7 @@ TEST( InvDepthFactor, Project1) {
|
|||
Point2 expected_uv = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector inv_landmark(5, 1., 0., 1., 0., 0.);
|
||||
LieVector inv_landmark((Vector(5) << 1., 0., 1., 0., 0.));
|
||||
LieScalar inv_depth(1./4);
|
||||
Point2 actual_uv = inv_camera.project(inv_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected_uv, actual_uv));
|
||||
|
@ -45,7 +45,7 @@ TEST( InvDepthFactor, Project2) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 1., M_PI/4., atan(1.0/sqrt(2.0)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 1., M_PI/4., atan(1.0/sqrt(2.0))));
|
||||
LieScalar inv_depth(1/sqrt(3.0));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -60,7 +60,7 @@ TEST( InvDepthFactor, Project3) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 0., M_PI/4., atan(2./sqrt(2.0)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 0., M_PI/4., atan(2./sqrt(2.0))));
|
||||
LieScalar inv_depth( 1./sqrt(1.0+1+4));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -75,7 +75,7 @@ TEST( InvDepthFactor, Project4) {
|
|||
Point2 expected = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector diag_landmark(5, 0., 0., 0., atan(4.0/1), atan(2./sqrt(1.+16.)));
|
||||
LieVector diag_landmark((Vector(5) << 0., 0., 0., atan(4.0/1), atan(2./sqrt(1.+16.))));
|
||||
LieScalar inv_depth(1./sqrt(1.+16.+4.));
|
||||
Point2 actual = inv_camera.project(diag_landmark, inv_depth);
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
@ -88,7 +88,7 @@ Point2 project_(const Pose3& pose, const LieVector& landmark, const LieScalar& i
|
|||
|
||||
TEST( InvDepthFactor, Dproject_pose)
|
||||
{
|
||||
LieVector landmark(6,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative31<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -100,7 +100,7 @@ TEST( InvDepthFactor, Dproject_pose)
|
|||
/* ************************************************************************* */
|
||||
TEST( InvDepthFactor, Dproject_landmark)
|
||||
{
|
||||
LieVector landmark(5,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative32<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -112,7 +112,7 @@ TEST( InvDepthFactor, Dproject_landmark)
|
|||
/* ************************************************************************* */
|
||||
TEST( InvDepthFactor, Dproject_inv_depth)
|
||||
{
|
||||
LieVector landmark(5,0.1,0.2,0.3, 0.1,0.2);
|
||||
LieVector landmark((Vector(5) << 0.1,0.2,0.3, 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
Matrix expected = numericalDerivative33<Point2,Pose3,LieVector>(project_,level_pose, landmark, inv_depth);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
|
@ -124,7 +124,7 @@ TEST( InvDepthFactor, Dproject_inv_depth)
|
|||
/* ************************************************************************* */
|
||||
TEST(InvDepthFactor, backproject)
|
||||
{
|
||||
LieVector expected(5,0.,0.,1., 0.1,0.2);
|
||||
LieVector expected((Vector(5) << 0.,0.,1., 0.1,0.2));
|
||||
LieScalar inv_depth(1./4);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose,K);
|
||||
Point2 z = inv_camera.project(expected, inv_depth);
|
||||
|
@ -140,7 +140,7 @@ TEST(InvDepthFactor, backproject)
|
|||
TEST(InvDepthFactor, backproject2)
|
||||
{
|
||||
// backwards facing camera
|
||||
LieVector expected(5,-5.,-5.,2., 3., -0.1);
|
||||
LieVector expected((Vector(5) << -5.,-5.,2., 3., -0.1));
|
||||
LieScalar inv_depth(1./10);
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(Pose3(Rot3::ypr(1.5,0.1, -1.5), Point3(-5, -5, 2)),K);
|
||||
Point2 z = inv_camera.project(expected, inv_depth);
|
||||
|
|
|
@ -72,7 +72,7 @@ TEST( testPose3Upright, manifold ) {
|
|||
EXPECT(assert_equal(x1, x1.retract(zero(4)), tol));
|
||||
EXPECT(assert_equal(x2, x2.retract(zero(4)), tol));
|
||||
|
||||
Vector delta12 = Vector_(4, 3.0, 0.0, 4.0, 0.0), delta21 = -delta12;
|
||||
Vector delta12 = (Vector(4) << 3.0, 0.0, 4.0, 0.0), delta21 = -delta12;
|
||||
EXPECT(assert_equal(x2, x1.retract(delta12), tol));
|
||||
EXPECT(assert_equal(x1, x2.retract(delta21), tol));
|
||||
|
||||
|
|
|
@ -266,7 +266,7 @@ namespace gtsam {
|
|||
}
|
||||
}
|
||||
|
||||
return Vector_(2, p_inlier, p_outlier);
|
||||
return (Vector(2) << p_inlier, p_outlier);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -537,7 +537,7 @@ public:
|
|||
|
||||
Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
|
||||
|
||||
Vector omega_earth_ECEF(Vector_(3, 0.0, 0.0, 7.292115e-5));
|
||||
Vector omega_earth_ECEF((Vector(3) << 0.0, 0.0, 7.292115e-5));
|
||||
omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
|
||||
|
||||
// Calculating g
|
||||
|
@ -551,7 +551,7 @@ public:
|
|||
double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature
|
||||
double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
|
||||
double g_calc( g0/( pow(1 + height/Ro, 2) ) );
|
||||
g_ENU = Vector_(3, 0.0, 0.0, -g_calc);
|
||||
g_ENU = (Vector(3) << 0.0, 0.0, -g_calc);
|
||||
|
||||
|
||||
// Calculate rho
|
||||
|
@ -560,7 +560,7 @@ public:
|
|||
double rho_E = -Vn/(Rm + height);
|
||||
double rho_N = Ve/(Rp + height);
|
||||
double rho_U = Ve*tan(lat_new)/(Rp + height);
|
||||
rho_ENU = Vector_(3, rho_E, rho_N, rho_U);
|
||||
rho_ENU = (Vector(3) << rho_E, rho_N, rho_U);
|
||||
}
|
||||
|
||||
static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
|
||||
|
|
|
@ -96,7 +96,7 @@ public:
|
|||
" moved behind camera " << DefaultKeyFormatter(this->key1()) << std::endl;
|
||||
return gtsam::ones(2) * 2.0 * K_->fx();
|
||||
}
|
||||
return gtsam::Vector_(1, 0.0);
|
||||
return (gtsam::Vector(1) << 0.0);
|
||||
}
|
||||
|
||||
/** return the measurement */
|
||||
|
|
|
@ -96,7 +96,7 @@ public:
|
|||
<< std::endl;
|
||||
return gtsam::ones(2) * 2.0 * K_->fx();
|
||||
}
|
||||
return gtsam::Vector_(1, 0.0);
|
||||
return (gtsam::Vector(1) << 0.0);
|
||||
}
|
||||
|
||||
/// Evaluate error h(x)-z and optionally derivatives
|
||||
|
|
|
@ -99,7 +99,7 @@ public:
|
|||
<< std::endl;
|
||||
return gtsam::ones(2) * 2.0 * K_->fx();
|
||||
}
|
||||
return gtsam::Vector_(1, 0.0);
|
||||
return (gtsam::Vector(1) << 0.0);
|
||||
}
|
||||
|
||||
/// Evaluate error h(x)-z and optionally derivatives
|
||||
|
|
|
@ -35,7 +35,7 @@ public:
|
|||
}
|
||||
|
||||
Vector b_g(double g_e) {
|
||||
Vector n_g = Vector_(3, 0.0, 0.0, g_e);
|
||||
Vector n_g = (Vector(3) << 0.0, 0.0, g_e);
|
||||
return (bRn_ * n_g).vector();
|
||||
}
|
||||
|
||||
|
|
|
@ -70,7 +70,7 @@ namespace gtsam {
|
|||
|
||||
/** Single Element Constructor: acts on a single parameter specified by idx */
|
||||
PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
|
||||
Base(model, key), prior_(Vector_(1, prior)), mask_(1, idx), H_(zeros(1, T::Dim())) {
|
||||
Base(model, key), prior_((Vector(1) << prior)), mask_(1, idx), H_(zeros(1, T::Dim())) {
|
||||
assert(model->dim() == 1);
|
||||
this->fillH();
|
||||
}
|
||||
|
|
|
@ -32,7 +32,7 @@ Vector RelativeElevationFactor::evaluateError(const Pose3& pose, const Point3& p
|
|||
*H2 = zeros(1, 3);
|
||||
(*H2)(0, 2) = -1.0;
|
||||
}
|
||||
return Vector_(1, hx - measured_);
|
||||
return (Vector(1) << hx - measured_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -276,7 +276,7 @@ namespace gtsam {
|
|||
}
|
||||
}
|
||||
|
||||
return Vector_(2, p_inlier, p_outlier);
|
||||
return (Vector(2) << p_inlier, p_outlier);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -75,7 +75,7 @@ TEST (AHRS, Mechanization_integrate) {
|
|||
Mechanization_bRn2 mech;
|
||||
KalmanFilter::State state;
|
||||
// boost::tie(mech,state) = ahrs.initialize(g_e);
|
||||
// Vector u = Vector_(3,0.05,0.0,0.0);
|
||||
// Vector u = (Vector(3) << 0.05,0.0,0.0);
|
||||
// double dt = 2;
|
||||
// Rot3 expected;
|
||||
// Mechanization_bRn2 mech2 = mech.integrate(u,dt);
|
||||
|
|
|
@ -119,10 +119,10 @@ TEST( InertialNavFactor_GlobalVelocity, Predict)
|
|||
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
|
||||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
imuBias::ConstantBias Bias1;
|
||||
Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector expectedVel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector expectedVel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
Pose3 actualPose2;
|
||||
LieVector actualVel2;
|
||||
f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2);
|
||||
|
@ -157,8 +157,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorPosVel)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
LieVector Vel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -192,8 +192,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRot)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0));
|
||||
Pose3 Pose2(Rot3::Expmap(measurement_gyro*measurement_dt), Point3(2.0,1.0,3.0));
|
||||
LieVector Vel1(3,0.0,0.0,0.0);
|
||||
LieVector Vel2(3,0.0,0.0,0.0);
|
||||
LieVector Vel1((Vector(3) << 0.0, 0.0, 0.0));
|
||||
LieVector Vel2((Vector(3) << 0.0, 0.0, 0.0));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -230,7 +230,7 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotPosVel)
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5, -0.5, 0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
|
@ -302,13 +302,13 @@ TEST (InertialNavFactor_GlobalVelocity, Jacobian ) {
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5, -0.5, 0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800);
|
||||
Pose3 Pose2(R2, t2);
|
||||
LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000);
|
||||
LieVector Vel2((Vector(3) << 0.510000000000000, -0.480000000000000, 0.430000000000000));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual;
|
||||
|
@ -447,10 +447,10 @@ TEST( InertialNavFactor_GlobalVelocity, PredictWithTransform)
|
|||
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model, body_P_sensor);
|
||||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
imuBias::ConstantBias Bias1;
|
||||
Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector expectedVel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector expectedVel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
Pose3 actualPose2;
|
||||
LieVector actualVel2;
|
||||
f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2);
|
||||
|
@ -488,8 +488,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorPosVelWithTransform)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00));
|
||||
Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04));
|
||||
LieVector Vel1(3, 0.50, -0.50, 0.40);
|
||||
LieVector Vel2(3, 0.51, -0.48, 0.43);
|
||||
LieVector Vel1((Vector(3) << 0.50, -0.50, 0.40));
|
||||
LieVector Vel2((Vector(3) << 0.51, -0.48, 0.43));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -527,8 +527,8 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotWithTransform)
|
|||
|
||||
Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0));
|
||||
Pose3 Pose2(Rot3::Expmap(body_P_sensor.rotation().matrix()*measurement_gyro*measurement_dt), Point3(2.0, 1.0, 3.0));
|
||||
LieVector Vel1(3,0.0,0.0,0.0);
|
||||
LieVector Vel2(3,0.0,0.0,0.0);
|
||||
LieVector Vel1((Vector(3) << 0.0,0.0,0.0));
|
||||
LieVector Vel2((Vector(3) << 0.0,0.0,0.0));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2));
|
||||
|
@ -569,7 +569,7 @@ TEST( InertialNavFactor_GlobalVelocity, ErrorRotPosVelWithTransform)
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5,-0.5,0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
|
@ -618,13 +618,13 @@ TEST (InertialNavFactor_GlobalVelocity, JacobianWithTransform ) {
|
|||
-0.652537293, 0.709880342, 0.265075427);
|
||||
Point3 t1(2.0,1.0,3.0);
|
||||
Pose3 Pose1(R1, t1);
|
||||
LieVector Vel1(3,0.5,-0.5,0.4);
|
||||
LieVector Vel1((Vector(3) << 0.5,-0.5,0.4));
|
||||
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
|
||||
0.609241153, 0.67099888, -0.422594037,
|
||||
-0.636011287, 0.731761397, 0.244979388);
|
||||
Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800);
|
||||
Pose3 Pose2(R2, t2);
|
||||
LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000);
|
||||
LieVector Vel2((Vector(3) << 0.510000000000000, -0.480000000000000, 0.430000000000000));
|
||||
imuBias::ConstantBias Bias1;
|
||||
|
||||
Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual;
|
||||
|
|
|
@ -38,7 +38,7 @@ TEST( InvDepthFactor, optimize) {
|
|||
Point2 expected_uv = level_camera.project(landmark);
|
||||
|
||||
InvDepthCamera3<Cal3_S2> inv_camera(level_pose, K);
|
||||
LieVector inv_landmark(5, 0., 0., 1., 0., 0.);
|
||||
LieVector inv_landmark((Vector(5) << 0., 0., 1., 0., 0.));
|
||||
// initialize inverse depth with "incorrect" depth of 1/4
|
||||
// in reality this is 1/5, but initial depth is guessed
|
||||
LieScalar inv_depth(1./4);
|
||||
|
|
|
@ -45,7 +45,7 @@ TEST( InvDepthFactorVariant1, optimize) {
|
|||
double theta = atan2(ray.y(), ray.x());
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
double rho = 1./ray.norm();
|
||||
LieVector expected(6, x, y, z, theta, phi, rho);
|
||||
LieVector expected((Vector(6) << x, y, z, theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ TEST( InvDepthFactorVariant2, optimize) {
|
|||
double theta = atan2(ray.y(), ray.x());
|
||||
double phi = atan2(ray.z(), sqrt(ray.x()*ray.x()+ray.y()*ray.y()));
|
||||
double rho = 1./ray.norm();
|
||||
LieVector expected(3, theta, phi, rho);
|
||||
LieVector expected((Vector(3) << theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ TEST( InvDepthFactorVariant3, optimize) {
|
|||
double theta = atan2(landmark_p1.x(), landmark_p1.z());
|
||||
double phi = atan2(landmark_p1.y(), sqrt(landmark_p1.x()*landmark_p1.x()+landmark_p1.z()*landmark_p1.z()));
|
||||
double rho = 1./landmark_p1.norm();
|
||||
LieVector expected(3, theta, phi, rho);
|
||||
LieVector expected((Vector(3) << theta, phi, rho));
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -187,7 +187,7 @@ TEST( testBoundingConstraint, MaxDistance_basics) {
|
|||
EXPECT(!rangeBound.isGreaterThan());
|
||||
EXPECT(rangeBound.dim() == 1);
|
||||
|
||||
EXPECT(assert_equal(Vector_(1, 2.0), rangeBound.evaluateError(pt1, pt1)));
|
||||
EXPECT(assert_equal(((Vector)Vector(1) << 2.0), rangeBound.evaluateError(pt1, pt1)));
|
||||
EXPECT(assert_equal(ones(1), rangeBound.evaluateError(pt1, pt2)));
|
||||
EXPECT(assert_equal(zero(1), rangeBound.evaluateError(pt1, pt3)));
|
||||
EXPECT(assert_equal(-1.0*ones(1), rangeBound.evaluateError(pt1, pt4)));
|
||||
|
|
|
@ -199,7 +199,7 @@ TEST(GaussianJunctionTreeB, simpleMarginal) {
|
|||
// Create a simple graph
|
||||
NonlinearFactorGraph fg;
|
||||
fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
|
||||
fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector_(3, 10.0, 1.0, 1.0))));
|
||||
fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas((Vector(3) << 10.0, 1.0, 1.0))));
|
||||
|
||||
Values init;
|
||||
init.insert(X(0), Pose2());
|
||||
|
|
|
@ -266,10 +266,10 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor4) {
|
||||
TestFactor4 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 10.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(25.0/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
@ -312,11 +312,11 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor5) {
|
||||
TestFactor5 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(5), LieVector(1, 5.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
tv.insert(X(5), LieVector((Vector(1) << 5.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 15.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(56.25/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
@ -364,12 +364,12 @@ public:
|
|||
TEST(NonlinearFactor, NoiseModelFactor6) {
|
||||
TestFactor6 tf;
|
||||
Values tv;
|
||||
tv.insert(X(1), LieVector(1, 1.0));
|
||||
tv.insert(X(2), LieVector(1, 2.0));
|
||||
tv.insert(X(3), LieVector(1, 3.0));
|
||||
tv.insert(X(4), LieVector(1, 4.0));
|
||||
tv.insert(X(5), LieVector(1, 5.0));
|
||||
tv.insert(X(6), LieVector(1, 6.0));
|
||||
tv.insert(X(1), LieVector((Vector(1) << 1.0)));
|
||||
tv.insert(X(2), LieVector((Vector(1) << 2.0)));
|
||||
tv.insert(X(3), LieVector((Vector(1) << 3.0)));
|
||||
tv.insert(X(4), LieVector((Vector(1) << 4.0)));
|
||||
tv.insert(X(5), LieVector((Vector(1) << 5.0)));
|
||||
tv.insert(X(6), LieVector((Vector(1) << 6.0)));
|
||||
EXPECT(assert_equal((Vector(1) << 21.0), tf.unwhitenedError(tv)));
|
||||
DOUBLES_EQUAL(110.25/2.0, tf.error(tv), 1e-9);
|
||||
JacobianFactor jf(*boost::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
|
||||
|
|
|
@ -287,8 +287,8 @@ TEST (testSerializationSLAM, smallExample_nonlinear) {
|
|||
/* ************************************************************************* */
|
||||
TEST (testSerializationSLAM, factors) {
|
||||
|
||||
LieVector lieVector(4, 1.0, 2.0, 3.0, 4.0);
|
||||
LieMatrix lieMatrix(2, 3, 1.0, 2.0, 3.0, 4.0, 5.0 ,6.0);
|
||||
LieVector lieVector((Vector(4) << 1.0, 2.0, 3.0, 4.0));
|
||||
LieMatrix lieMatrix((Matrix(2, 3) << 1.0, 2.0, 3.0, 4.0, 5.0 ,6.0));
|
||||
Point2 point2(1.0, 2.0);
|
||||
StereoPoint2 stereoPoint2(1.0, 2.0, 3.0);
|
||||
Point3 point3(1.0, 2.0, 3.0);
|
||||
|
|
|
@ -58,7 +58,7 @@ TEST( simulated2DOriented, Dprior )
|
|||
TEST( simulated2DOriented, constructor )
|
||||
{
|
||||
Pose2 measurement(0.2, 0.3, 0.1);
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector_(3, 1., 1., 1.));
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 1., 1., 1.));
|
||||
simulated2DOriented::Odometry factor(measurement, model, X(1), X(2));
|
||||
|
||||
simulated2DOriented::Values config;
|
||||
|
|
Loading…
Reference in New Issue