Adding factor with shared calibration as a variable
parent
301f7fe1a3
commit
8ca7f1ff1d
|
|
@ -0,0 +1,119 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file EssentialMatrixWithCalibrationFactor.h
|
||||
*
|
||||
* @brief A factor evaluating algebraic epipolar error with essential matrix and calibration as variables.
|
||||
*
|
||||
* @author Ayush Baid
|
||||
* @author Akshay Krishnan
|
||||
* @date April 23, 2021
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/EssentialMatrix.h>
|
||||
#include <iostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Factor that evaluates algebraic epipolar error (K^-1 p)'E (K^-1 p) for given essential matrix and calibration shared
|
||||
* between two images.
|
||||
*/
|
||||
template<class CALIBRATION>
|
||||
class EssentialMatrixWithCalibrationFactor: public NoiseModelFactor2<EssentialMatrix, CALIBRATION > {
|
||||
|
||||
Point2 pA_, pB_; ///< points in pixel coordinates
|
||||
|
||||
typedef NoiseModelFactor2<EssentialMatrix, CALIBRATION> Base;
|
||||
typedef EssentialMatrixWithCalibrationFactor This;
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param essentialMatrixKey Essential Matrix variable key
|
||||
* @param calibrationKey Calibration variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
||||
*/
|
||||
EssentialMatrixWithCalibrationFactor(Key essentialMatrixKey, Key calibrationKey, const Point2& pA, const Point2& pB,
|
||||
const SharedNoiseModel& model) :
|
||||
Base(model, essentialMatrixKey, calibrationKey), pA_(pA), pB_(pB) {}
|
||||
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
gtsam::NonlinearFactor::shared_ptr clone() const override {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
||||
}
|
||||
|
||||
/// print
|
||||
void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||
Base::print(s);
|
||||
std::cout << " EssentialMatrixWithCalibrationFactor with measurements\n ("
|
||||
<< pA_.transpose() << ")' and (" << pB_.transpose() << ")'"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
/// vector of errors returns 1D vector
|
||||
/**
|
||||
* @brief Calculate the algebraic epipolar error p' (K^-1)' E K p.
|
||||
*
|
||||
* @param E essential matrix for key essentialMatrixKey
|
||||
* @param K calibration (common for both images) for key calibrationKey
|
||||
* @param H1 optional jacobian in E
|
||||
* @param H2 optional jacobian in K
|
||||
* @return * Vector
|
||||
*/
|
||||
Vector evaluateError(const EssentialMatrix& E, const CALIBRATION& K,
|
||||
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) const override {
|
||||
Vector error(1);
|
||||
// converting from pixel coordinates to normalized coordinates cA and cB
|
||||
Matrix cA_H_K; // dcA/dK
|
||||
Matrix cB_H_K; // dcB/dK
|
||||
Point2 cA = K.calibrate(pA_, cA_H_K);
|
||||
Point2 cB = K.calibrate(pB_, cB_H_K);
|
||||
|
||||
// Homogeneous the coordinates
|
||||
Vector3 vA = EssentialMatrix::Homogeneous(cA);
|
||||
Vector3 vB = EssentialMatrix::Homogeneous(cB);
|
||||
|
||||
if (H2){
|
||||
// compute the jacobian of error w.r.t K
|
||||
|
||||
// dvX / dcX [3x2] = [1, 0], [0, 1], [0, 0]
|
||||
Matrix v_H_c = (Matrix(3, 2) << 1.0, 0.0, 0.0, 1.0, 0.0, 0.0).finished(); // [3x2]
|
||||
|
||||
// computing dvA/dK = dvA/dcA * dcA/dK and dVB/dK = dvB/dcB * dcB/dK
|
||||
Matrix vA_H_K = v_H_c * cA_H_K;
|
||||
Matrix vB_H_K = v_H_c * cB_H_K;
|
||||
|
||||
// error function f = vB.T * E * vA
|
||||
// H2 = df/dK = vB.T * E.T * dvA/dK + vA.T * E * dvB/dK
|
||||
*H2 = vB.transpose() * E.matrix().transpose() * vA_H_K + vA.transpose() * E.matrix() * vB_H_K;
|
||||
}
|
||||
|
||||
error << E.error(vA, vB, H1);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
public:
|
||||
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
|
||||
};
|
||||
|
||||
}// gtsam
|
||||
|
|
@ -0,0 +1,446 @@
|
|||
/**
|
||||
* @file testEssentialMatrixWithCalibrationFactor.cpp
|
||||
* @brief Test EssentialMatrixWithCalibrationFactor class
|
||||
* @author Ayush Baid
|
||||
* @author Akshay Krishnan
|
||||
* @date April 22, 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/EssentialMatrixWithCalibrationFactor.h>
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/nonlinear/expressionTesting.h>
|
||||
#include <gtsam/nonlinear/ExpressionFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Noise model for first type of factor is evaluating algebraic error
|
||||
noiseModel::Isotropic::shared_ptr model1 = noiseModel::Isotropic::Sigma(1,
|
||||
0.01);
|
||||
// Noise model for second type of factor is evaluating pixel coordinates
|
||||
noiseModel::Unit::shared_ptr model2 = noiseModel::Unit::Create(2);
|
||||
|
||||
// The rotation between body and camera is:
|
||||
gtsam::Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
|
||||
gtsam::Rot3 cRb = gtsam::Rot3(bX, bZ, -bY).inverse();
|
||||
|
||||
namespace example1 {
|
||||
|
||||
const string filename = findExampleDataFile("5pointExample1.txt");
|
||||
SfmData data;
|
||||
bool readOK = readBAL(filename, data);
|
||||
Rot3 c1Rc2 = data.cameras[1].pose().rotation();
|
||||
Point3 c1Tc2 = data.cameras[1].pose().translation();
|
||||
Cal3Bundler trueK = data.cameras[1].calibration(); // TODO: maybe default value not good; assert with 0th
|
||||
// PinholeCamera<Cal3Bundler> camera2(data.cameras[1].pose(), trueK);
|
||||
Rot3 trueRotation(c1Rc2);
|
||||
Unit3 trueDirection(c1Tc2);
|
||||
EssentialMatrix trueE(trueRotation, trueDirection);
|
||||
|
||||
double baseline = 0.1; // actual baseline of the camera
|
||||
|
||||
Point2 pA(size_t i) {
|
||||
return data.tracks[i].measurements[0].second;
|
||||
}
|
||||
Point2 pB(size_t i) {
|
||||
return data.tracks[i].measurements[1].second;
|
||||
}
|
||||
Vector vA(size_t i, Cal3Bundler K) {
|
||||
return EssentialMatrix::Homogeneous(K.calibrate(pA(i)));
|
||||
}
|
||||
Vector vB(size_t i, Cal3Bundler K) {
|
||||
return EssentialMatrix::Homogeneous(K.calibrate(pB(i)));
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixWithCalibrationFactor, testData) {
|
||||
CHECK(readOK);
|
||||
|
||||
// Check E matrix
|
||||
Matrix expected(3, 3);
|
||||
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
|
||||
Matrix aEb_matrix = skewSymmetric(c1Tc2.x(), c1Tc2.y(), c1Tc2.z())
|
||||
* c1Rc2.matrix();
|
||||
EXPECT(assert_equal(expected, aEb_matrix, 1e-8));
|
||||
|
||||
// Check some projections
|
||||
EXPECT(assert_equal(Point2(0, 0), pA(0), 1e-8));
|
||||
EXPECT(assert_equal(Point2(0, 0.1), pB(0), 1e-8));
|
||||
EXPECT(assert_equal(Point2(0, -1), pA(4), 1e-8));
|
||||
EXPECT(assert_equal(Point2(-1, 0.2), pB(4), 1e-8));
|
||||
|
||||
// Check homogeneous version
|
||||
EXPECT(assert_equal(Vector3(-1, 0.2, 1), vB(4, trueK), 1e-8));
|
||||
|
||||
// check the calibration
|
||||
Cal3Bundler expectedK;
|
||||
EXPECT(assert_equal(expectedK, trueK));
|
||||
|
||||
|
||||
// Check epipolar constraint
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, vA(i, trueK).transpose() * aEb_matrix * vB(i, trueK), 1e-8);
|
||||
|
||||
// Check epipolar constraint
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA(i, trueK), vB(i, trueK)), 1e-7);
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixWithCalibrationFactor, factor) {
|
||||
Key keyE(1);
|
||||
Key keyK(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixWithCalibrationFactor<Cal3Bundler> factor(keyE, keyK, pA(i), pB(i), model1);
|
||||
|
||||
// Check evaluation
|
||||
Vector expected(1);
|
||||
expected << 0;
|
||||
Matrix HEactual;
|
||||
Matrix HKactual;
|
||||
Vector actual = factor.evaluateError(trueE, trueK, HEactual, HKactual);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
Matrix HEexpected;
|
||||
Matrix HKexpected;
|
||||
typedef Eigen::Matrix<double,1,1> Vector1;
|
||||
// TODO: fix this
|
||||
boost::function<Vector(const EssentialMatrix&, const Cal3Bundler&)> f = boost::bind(
|
||||
&EssentialMatrixWithCalibrationFactor<Cal3Bundler>::evaluateError, factor, _1, _2, boost::none, boost::none);
|
||||
HEexpected = numericalDerivative21<Vector1, EssentialMatrix, Cal3Bundler>(f, trueE, trueK);
|
||||
HKexpected = numericalDerivative22<Vector1, EssentialMatrix, Cal3Bundler>(f, trueE, trueK);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(HEexpected, HEactual, 1e-8));
|
||||
EXPECT(assert_equal(HKexpected, HKactual, 1e-5));
|
||||
}
|
||||
}
|
||||
|
||||
// //*************************************************************************
|
||||
// TEST(EssentialMatrixWithCalibrationFactor, ExpressionFactor) {
|
||||
// Key keyE(1);
|
||||
// Key keyK(2);
|
||||
// for (size_t i = 0; i < 5; i++) {
|
||||
// boost::function<double(const EssentialMatrix&, const Cal3Bundler&,
|
||||
// OptionalJacobian<1, 5>, OptionalJacobian<1, 3>)> f =
|
||||
// boost::bind(&EssentialMatrix::error, _1, pA(i), pB(i), _2);
|
||||
// Expression<EssentialMatrix> E_(keyE); // leaf expression
|
||||
// Expression<Cal3Bundler> K_(keyK); // leaf expression
|
||||
// Expression<double> expr(f, E_, K_); // unary expression
|
||||
|
||||
// // Test the derivatives using Paul's magic
|
||||
// Values values;
|
||||
// values.insert(keyE, trueE);
|
||||
// values.insert(keyK, trueK);
|
||||
// EXPECT_CORRECT_EXPRESSION_JACOBIANS(expr, values, 1e-5, 1e-9);
|
||||
|
||||
// // Create the factor
|
||||
// ExpressionFactor<double> factor(model1, 0, expr);
|
||||
|
||||
// // Check evaluation
|
||||
// Vector expected(1);
|
||||
// expected << 0;
|
||||
// vector<Matrix> Hactual(1);
|
||||
// Vector actual = factor.unwhitenedError(values, Hactual);
|
||||
// EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
// }
|
||||
// }
|
||||
|
||||
//*************************************************************************
|
||||
// TEST(EssentialMatrixWithCalibrationFactor, ExpressionFactorRotationOnly) {
|
||||
// Key keyE(1);
|
||||
// Key keyK(1);
|
||||
// for (size_t i = 0; i < 5; i++) {
|
||||
// boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
|
||||
// boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
|
||||
// boost::function<EssentialMatrix(const Rot3&, const Unit3&, OptionalJacobian<5, 3>,
|
||||
// OptionalJacobian<5, 2>)> g;
|
||||
// Expression<Rot3> R_(key);
|
||||
// Expression<Unit3> d_(trueDirection);
|
||||
// Expression<EssentialMatrix> E_(&EssentialMatrix::FromRotationAndDirection, R_, d_);
|
||||
// Expression<double> expr(f, E_);
|
||||
|
||||
// // Test the derivatives using Paul's magic
|
||||
// Values values;
|
||||
// values.insert(key, trueRotation);
|
||||
// EXPECT_CORRECT_EXPRESSION_JACOBIANS(expr, values, 1e-5, 1e-9);
|
||||
|
||||
// // Create the factor
|
||||
// ExpressionFactor<double> factor(model1, 0, expr);
|
||||
|
||||
// // Check evaluation
|
||||
// Vector expected(1);
|
||||
// expected << 0;
|
||||
// vector<Matrix> Hactual(1);
|
||||
// Vector actual = factor.unwhitenedError(values, Hactual);
|
||||
// EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
// }
|
||||
// }
|
||||
|
||||
//*************************************************************************
|
||||
TEST(EssentialMatrixWithCalibrationFactor, evaluateErrorJacobians) {
|
||||
Key keyE(1);
|
||||
Key keyK(2);
|
||||
// initialize essential matrix
|
||||
Rot3 r = Rot3::Expmap(Vector3(M_PI/6, M_PI / 3, M_PI/9));
|
||||
Unit3 t(Point3(2, -1, 0.5));
|
||||
EssentialMatrix E = EssentialMatrix::FromRotationAndDirection(r, t);
|
||||
Cal3_S2 K(200, 1, 1, 10, 10);
|
||||
Values val;
|
||||
val.insert(keyE, E);
|
||||
val.insert(keyK, K);
|
||||
|
||||
Point2 pA(10.0, 20.0);
|
||||
Point2 pB(12.0, 15.0);
|
||||
|
||||
EssentialMatrixWithCalibrationFactor<Cal3_S2> f(keyE, keyK, pA, pB, model1);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(f, val, 1e-5, 1e-6);
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixWithCalibrationFactor, minimization) {
|
||||
// Here we want to optimize directly on essential matrix constraints
|
||||
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
|
||||
// but GTSAM does the equivalent anyway, provided we give the right
|
||||
// factors. In this case, the factors are the constraints.
|
||||
|
||||
// We start with a factor graph and add constraints to it
|
||||
// Noise sigma is 1cm, assuming metric measurements
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
graph.emplace_shared<EssentialMatrixWithCalibrationFactor<Cal3Bundler>>(1, 2, pA(i), pB(i), model1);
|
||||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
truth.insert(1, trueE);
|
||||
truth.insert(2, trueK);
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
|
||||
// Check error at initial estimate
|
||||
Values initial;
|
||||
EssentialMatrix initialE = trueE.retract(
|
||||
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
Cal3Bundler initialK = trueK.retract(
|
||||
(Vector(3) << 0.1, -1e-1, 3e-2).finished());
|
||||
initial.insert(1, initialE);
|
||||
initial.insert(2, initialK);
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT_DOUBLES_EQUAL(618.94, graph.error(initial), 1e-2);
|
||||
#else
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
|
||||
#endif
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtParams parameters;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
// Check result
|
||||
EssentialMatrix actualE = result.at<EssentialMatrix>(1);
|
||||
Cal3Bundler actualK = result.at<Cal3Bundler>(2);
|
||||
EXPECT(assert_equal(trueE, actualE, 1e-1));
|
||||
EXPECT(assert_equal(trueK, actualK, 1e-1));
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
||||
// Check errors individually
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, actualE.error(vA(i, actualK), vB(i, actualK)), 1e-6);
|
||||
|
||||
}
|
||||
|
||||
} // namespace example1
|
||||
|
||||
//*************************************************************************
|
||||
|
||||
// namespace example2 {
|
||||
|
||||
// const string filename = findExampleDataFile("5pointExample2.txt");
|
||||
// SfmData data;
|
||||
// bool readOK = readBAL(filename, data);
|
||||
// Rot3 aRb = data.cameras[1].pose().rotation();
|
||||
// Point3 aTb = data.cameras[1].pose().translation();
|
||||
// EssentialMatrix trueE(aRb, Unit3(aTb));
|
||||
|
||||
// double baseline = 10; // actual baseline of the camera
|
||||
|
||||
// Point2 pA(size_t i) {
|
||||
// return data.tracks[i].measurements[0].second;
|
||||
// }
|
||||
// Point2 pB(size_t i) {
|
||||
// return data.tracks[i].measurements[1].second;
|
||||
// }
|
||||
|
||||
// boost::shared_ptr<Cal3Bundler> //
|
||||
// K = boost::make_shared<Cal3Bundler>(500, 0, 0);
|
||||
// PinholeCamera<Cal3Bundler> camera2(data.cameras[1].pose(), *K);
|
||||
|
||||
// Vector vA(size_t i) {
|
||||
// Point2 xy = K->calibrate(pA(i));
|
||||
// return EssentialMatrix::Homogeneous(xy);
|
||||
// }
|
||||
// Vector vB(size_t i) {
|
||||
// Point2 xy = K->calibrate(pB(i));
|
||||
// return EssentialMatrix::Homogeneous(xy);
|
||||
// }
|
||||
|
||||
// //*************************************************************************
|
||||
// TEST (EssentialWithMatrixCalibrationFactor, extraMinimization) {
|
||||
// // Additional test with camera moving in positive X direction
|
||||
|
||||
// NonlinearFactorGraph graph;
|
||||
// for (size_t i = 0; i < 5; i++)
|
||||
// graph.emplace_shared<EssentialMatrixWithCalibrationFactor>(1, pA(i), pB(i), model1, K);
|
||||
|
||||
// // Check error at ground truth
|
||||
// Values truth;
|
||||
// truth.insert(1, trueE);
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
|
||||
// // Check error at initial estimate
|
||||
// Values initial;
|
||||
// EssentialMatrix initialE = trueE.retract(
|
||||
// (Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
// initial.insert(1, initialE);
|
||||
|
||||
// #if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
// EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
|
||||
// #else
|
||||
// EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
|
||||
// #endif
|
||||
|
||||
// // Optimize
|
||||
// LevenbergMarquardtParams parameters;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
|
||||
// Values result = optimizer.optimize();
|
||||
|
||||
// // Check result
|
||||
// EssentialMatrix actual = result.at<EssentialMatrix>(1);
|
||||
// EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
|
||||
// // Check error at result
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
||||
// // Check errors individually
|
||||
// for (size_t i = 0; i < 5; i++)
|
||||
// EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
|
||||
|
||||
// }
|
||||
|
||||
// //*************************************************************************
|
||||
// TEST (EssentialMatrixFactor2, extraTest) {
|
||||
// for (size_t i = 0; i < 5; i++) {
|
||||
// EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2, K);
|
||||
|
||||
// // Check evaluation
|
||||
// Point3 P1 = data.tracks[i].p;
|
||||
// const Point2 pi = camera2.project(P1);
|
||||
// Point2 expected(pi - pB(i));
|
||||
|
||||
// Matrix Hactual1, Hactual2;
|
||||
// double d(baseline / P1.z());
|
||||
// Vector actual = factor.evaluateError(trueE, d, Hactual1, Hactual2);
|
||||
// EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// // Use numerical derivatives to calculate the expected Jacobian
|
||||
// Matrix Hexpected1, Hexpected2;
|
||||
// boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
// &EssentialMatrixFactor2::evaluateError, &factor, _1, _2, boost::none,
|
||||
// boost::none);
|
||||
// Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
// Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, trueE, d);
|
||||
|
||||
// // Verify the Jacobian is correct
|
||||
// EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
// EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
// }
|
||||
// }
|
||||
|
||||
// //*************************************************************************
|
||||
// TEST (EssentialMatrixFactor2, extraMinimization) {
|
||||
// // Additional test with camera moving in positive X direction
|
||||
|
||||
// // We start with a factor graph and add constraints to it
|
||||
// // Noise sigma is 1, assuming pixel measurements
|
||||
// NonlinearFactorGraph graph;
|
||||
// for (size_t i = 0; i < data.number_tracks(); i++)
|
||||
// graph.emplace_shared<EssentialMatrixFactor2>(100, i, pA(i), pB(i), model2, K);
|
||||
|
||||
// // Check error at ground truth
|
||||
// Values truth;
|
||||
// truth.insert(100, trueE);
|
||||
// for (size_t i = 0; i < data.number_tracks(); i++) {
|
||||
// Point3 P1 = data.tracks[i].p;
|
||||
// truth.insert(i, double(baseline / P1.z()));
|
||||
// }
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
|
||||
// // Optimize
|
||||
// LevenbergMarquardtParams parameters;
|
||||
// // parameters.setVerbosity("ERROR");
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
|
||||
// Values result = optimizer.optimize();
|
||||
|
||||
// // Check result
|
||||
// EssentialMatrix actual = result.at<EssentialMatrix>(100);
|
||||
// EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
// for (size_t i = 0; i < data.number_tracks(); i++)
|
||||
// EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);
|
||||
|
||||
// // Check error at result
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
// }
|
||||
|
||||
// //*************************************************************************
|
||||
// TEST (EssentialMatrixFactor3, extraTest) {
|
||||
|
||||
// // The "true E" in the body frame is
|
||||
// EssentialMatrix bodyE = cRb.inverse() * trueE;
|
||||
|
||||
// for (size_t i = 0; i < 5; i++) {
|
||||
// EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2, K);
|
||||
|
||||
// // Check evaluation
|
||||
// Point3 P1 = data.tracks[i].p;
|
||||
// const Point2 pi = camera2.project(P1);
|
||||
// Point2 expected(pi - pB(i));
|
||||
|
||||
// Matrix Hactual1, Hactual2;
|
||||
// double d(baseline / P1.z());
|
||||
// Vector actual = factor.evaluateError(bodyE, d, Hactual1, Hactual2);
|
||||
// EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// // Use numerical derivatives to calculate the expected Jacobian
|
||||
// Matrix Hexpected1, Hexpected2;
|
||||
// boost::function<Vector(const EssentialMatrix&, double)> f = boost::bind(
|
||||
// &EssentialMatrixFactor3::evaluateError, &factor, _1, _2, boost::none,
|
||||
// boost::none);
|
||||
// Hexpected1 = numericalDerivative21<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
// Hexpected2 = numericalDerivative22<Vector2, EssentialMatrix, double>(f, bodyE, d);
|
||||
|
||||
// // Verify the Jacobian is correct
|
||||
// EXPECT(assert_equal(Hexpected1, Hactual1, 1e-6));
|
||||
// EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
// }
|
||||
// }
|
||||
|
||||
// } // namespace example2
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
Loading…
Reference in New Issue