Optimization on the Essential manifold !
parent
f8d2c93303
commit
8b9d6b78dc
|
@ -904,6 +904,14 @@
|
||||||
<useDefaultCommand>true</useDefaultCommand>
|
<useDefaultCommand>true</useDefaultCommand>
|
||||||
<runAllBuilders>true</runAllBuilders>
|
<runAllBuilders>true</runAllBuilders>
|
||||||
</target>
|
</target>
|
||||||
|
<target name="testEssentialMatrixFactor.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||||
|
<buildCommand>make</buildCommand>
|
||||||
|
<buildArguments>-j5</buildArguments>
|
||||||
|
<buildTarget>testEssentialMatrixFactor.run</buildTarget>
|
||||||
|
<stopOnError>true</stopOnError>
|
||||||
|
<useDefaultCommand>true</useDefaultCommand>
|
||||||
|
<runAllBuilders>true</runAllBuilders>
|
||||||
|
</target>
|
||||||
<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||||
<buildCommand>make</buildCommand>
|
<buildCommand>make</buildCommand>
|
||||||
<buildArguments>-j2</buildArguments>
|
<buildArguments>-j2</buildArguments>
|
||||||
|
|
|
@ -10,6 +10,7 @@
|
||||||
#include <gtsam/geometry/Rot3.h>
|
#include <gtsam/geometry/Rot3.h>
|
||||||
#include <gtsam/geometry/Sphere2.h>
|
#include <gtsam/geometry/Sphere2.h>
|
||||||
#include <gtsam/geometry/Point2.h>
|
#include <gtsam/geometry/Point2.h>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
|
|
@ -8,115 +8,21 @@
|
||||||
#include <gtsam/geometry/EssentialMatrix.h>
|
#include <gtsam/geometry/EssentialMatrix.h>
|
||||||
#include <gtsam/geometry/CalibratedCamera.h>
|
#include <gtsam/geometry/CalibratedCamera.h>
|
||||||
#include <gtsam/base/Testable.h>
|
#include <gtsam/base/Testable.h>
|
||||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
||||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
||||||
#include <gtsam/base/numericalDerivative.h>
|
|
||||||
#include <CppUnitLite/TestHarness.h>
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
#include <boost/bind.hpp>
|
|
||||||
#include <boost/assign/std/vector.hpp>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace boost::assign;
|
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
/**
|
|
||||||
* Factor that evaluates epipolar error p'Ep for given essential matrix
|
|
||||||
*/
|
|
||||||
class EssentialMatrixFactor: public NoiseModelFactor1<EssentialMatrix> {
|
|
||||||
|
|
||||||
Point2 pA_, pB_; ///< Measurements in image A and B
|
|
||||||
Vector vA_, vB_; ///< Homogeneous versions
|
|
||||||
|
|
||||||
typedef NoiseModelFactor1<EssentialMatrix> Base;
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
/// Constructor
|
|
||||||
EssentialMatrixFactor(Key key, const Point2& pA, const Point2& pB,
|
|
||||||
const SharedNoiseModel& model) :
|
|
||||||
Base(model, key), pA_(pA), pB_(pB), //
|
|
||||||
vA_(EssentialMatrix::Homogeneous(pA)), //
|
|
||||||
vB_(EssentialMatrix::Homogeneous(pB)) {
|
|
||||||
}
|
|
||||||
|
|
||||||
/// print
|
|
||||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
|
|
||||||
DefaultKeyFormatter) const {
|
|
||||||
Base::print(s);
|
|
||||||
std::cout << " EssentialMatrixFactor with measurements\n ("
|
|
||||||
<< pA_.vector().transpose() << ")' and (" << pB_.vector().transpose()
|
|
||||||
<< ")'" << endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// vector of errors returns 1D vector
|
|
||||||
Vector evaluateError(const EssentialMatrix& E, boost::optional<Matrix&> H =
|
|
||||||
boost::none) const {
|
|
||||||
return (Vector(1) << E.error(vA_, vB_, H));
|
|
||||||
}
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
//*************************************************************************
|
//*************************************************************************
|
||||||
// Create two cameras and corresponding essential matrix E
|
// Create two cameras and corresponding essential matrix E
|
||||||
Rot3 aRb = Rot3::yaw(M_PI_2);
|
Rot3 aRb = Rot3::yaw(M_PI_2);
|
||||||
Point3 aTb(0.1, 0, 0);
|
Point3 aTb(0.1, 0, 0);
|
||||||
Pose3 identity, aPb(aRb, aTb);
|
|
||||||
typedef CalibratedCamera Cam;
|
|
||||||
Cam cameraA(identity), cameraB(aPb);
|
|
||||||
Matrix aEb_matrix = skewSymmetric(aTb.x(), aTb.y(), aTb.z()) * aRb.matrix();
|
|
||||||
|
|
||||||
// Create test data, we need at least 5 points
|
|
||||||
Point3 P[5] = { Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
|
||||||
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5) };
|
|
||||||
|
|
||||||
// Project points in both cameras
|
|
||||||
vector<Point2> pA(5), pB(5);
|
|
||||||
vector<Point2>::iterator //
|
|
||||||
it1 = std::transform(P, P + 5, pA.begin(),
|
|
||||||
boost::bind(&Cam::project, &cameraA, _1, boost::none, boost::none)), //
|
|
||||||
it2 = std::transform(P, P + 5, pB.begin(),
|
|
||||||
boost::bind(&Cam::project, &cameraB, _1, boost::none, boost::none));
|
|
||||||
|
|
||||||
// Converto to homogenous coordinates
|
|
||||||
vector<Vector> vA(5), vB(5);
|
|
||||||
vector<Vector>::iterator //
|
|
||||||
it3 = std::transform(pA.begin(), pA.end(), vA.begin(),
|
|
||||||
&EssentialMatrix::Homogeneous), //
|
|
||||||
it4 = std::transform(pB.begin(), pB.end(), vB.begin(),
|
|
||||||
&EssentialMatrix::Homogeneous);
|
|
||||||
|
|
||||||
//*************************************************************************
|
|
||||||
TEST (EssentialMatrix, testData) {
|
|
||||||
// Check E matrix
|
|
||||||
Matrix expected(3, 3);
|
|
||||||
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
|
|
||||||
EXPECT(assert_equal(expected, aEb_matrix));
|
|
||||||
|
|
||||||
// Check some projections
|
|
||||||
EXPECT(assert_equal(Point2(0,0),pA[0]));
|
|
||||||
EXPECT(assert_equal(Point2(0,0.1),pB[0]));
|
|
||||||
EXPECT(assert_equal(Point2(0,-1),pA[4]));
|
|
||||||
EXPECT(assert_equal(Point2(-1,0.2),pB[4]));
|
|
||||||
|
|
||||||
// Check homogeneous version
|
|
||||||
EXPECT(assert_equal((Vector(3) << -1,0.2,1),vB[4]));
|
|
||||||
|
|
||||||
// Check epipolar constraint
|
|
||||||
for (size_t i = 0; i < 5; i++)
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, vA[i].transpose() * aEb_matrix * vB[i], 1e-8);
|
|
||||||
|
|
||||||
// Check epipolar constraint
|
|
||||||
EssentialMatrix trueE(aRb, aTb);
|
|
||||||
for (size_t i = 0; i < 5; i++)
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA[i],vB[i]), 1e-8);
|
|
||||||
}
|
|
||||||
|
|
||||||
//*************************************************************************
|
//*************************************************************************
|
||||||
TEST (EssentialMatrix, equality) {
|
TEST (EssentialMatrix, equality) {
|
||||||
// EssentialMatrix actual, expected;
|
EssentialMatrix actual(aRb, aTb), expected(aRb, aTb);
|
||||||
// EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
}
|
}
|
||||||
|
|
||||||
//*************************************************************************
|
//*************************************************************************
|
||||||
|
@ -135,76 +41,6 @@ TEST (EssentialMatrix, retract2) {
|
||||||
EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
}
|
}
|
||||||
|
|
||||||
//*************************************************************************
|
|
||||||
TEST (EssentialMatrix, factor) {
|
|
||||||
EssentialMatrix trueE(aRb, aTb);
|
|
||||||
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(1);
|
|
||||||
|
|
||||||
for (size_t i = 0; i < 5; i++) {
|
|
||||||
EssentialMatrixFactor factor(1, pA[i], pB[i], model);
|
|
||||||
|
|
||||||
// Check evaluation
|
|
||||||
Vector expected(1);
|
|
||||||
expected << 0;
|
|
||||||
Matrix HActual;
|
|
||||||
Vector actual = factor.evaluateError(trueE, HActual);
|
|
||||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
|
||||||
|
|
||||||
// Use numerical derivatives to calculate the expected Jacobian
|
|
||||||
Matrix HExpected;
|
|
||||||
HExpected = numericalDerivative11<EssentialMatrix>(
|
|
||||||
boost::bind(&EssentialMatrixFactor::evaluateError, &factor, _1,
|
|
||||||
boost::none), trueE);
|
|
||||||
|
|
||||||
// Verify the Jacobian is correct
|
|
||||||
CHECK(assert_equal(HExpected, HActual, 1e-9));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//*************************************************************************
|
|
||||||
TEST (EssentialMatrix, fromConstraints) {
|
|
||||||
// Here we want to optimize directly on essential matrix constraints
|
|
||||||
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
|
|
||||||
// but GTSAM does the equivalent anyway, provided we give the right
|
|
||||||
// factors. In this case, the factors are the constraints.
|
|
||||||
|
|
||||||
// We start with a factor graph and add constraints to it
|
|
||||||
// Noise sigma is 1cm, assuming metric measurements
|
|
||||||
NonlinearFactorGraph graph;
|
|
||||||
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1,0.01);
|
|
||||||
for (size_t i = 0; i < 5; i++)
|
|
||||||
graph.add(EssentialMatrixFactor(1, pA[i], pB[i], model));
|
|
||||||
|
|
||||||
// Check error at ground truth
|
|
||||||
Values truth;
|
|
||||||
EssentialMatrix trueE(aRb, aTb);
|
|
||||||
truth.insert(1, trueE);
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
|
||||||
|
|
||||||
// Check error at initial estimate
|
|
||||||
Values initial;
|
|
||||||
EssentialMatrix initialE = trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1));
|
|
||||||
initial.insert(1, initialE);
|
|
||||||
EXPECT_DOUBLES_EQUAL(640, graph.error(initial), 1e-2);
|
|
||||||
|
|
||||||
// Optimize
|
|
||||||
LevenbergMarquardtParams parameters;
|
|
||||||
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
|
|
||||||
Values result = optimizer.optimize();
|
|
||||||
|
|
||||||
// Check result
|
|
||||||
EssentialMatrix actual = result.at<EssentialMatrix>(1);
|
|
||||||
EXPECT(assert_equal(trueE, actual,1e-1));
|
|
||||||
|
|
||||||
// Check error at result
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
|
||||||
|
|
||||||
// Check errors individually
|
|
||||||
for (size_t i = 0; i < 5; i++)
|
|
||||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA[i],vB[i]), 1e-6);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
||||||
|
|
|
@ -0,0 +1,54 @@
|
||||||
|
/*
|
||||||
|
* @file EssentialMatrixFactor.cpp
|
||||||
|
* @brief EssentialMatrixFactor class
|
||||||
|
* @author Frank Dellaert
|
||||||
|
* @date December 17, 2013
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||||
|
#include <gtsam/geometry/EssentialMatrix.h>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Factor that evaluates epipolar error p'Ep for given essential matrix
|
||||||
|
*/
|
||||||
|
class EssentialMatrixFactor: public NoiseModelFactor1<EssentialMatrix> {
|
||||||
|
|
||||||
|
Point2 pA_, pB_; ///< Measurements in image A and B
|
||||||
|
Vector vA_, vB_; ///< Homogeneous versions
|
||||||
|
|
||||||
|
typedef NoiseModelFactor1<EssentialMatrix> Base;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/// Constructor
|
||||||
|
EssentialMatrixFactor(Key key, const Point2& pA, const Point2& pB,
|
||||||
|
const SharedNoiseModel& model) :
|
||||||
|
Base(model, key), pA_(pA), pB_(pB), //
|
||||||
|
vA_(EssentialMatrix::Homogeneous(pA)), //
|
||||||
|
vB_(EssentialMatrix::Homogeneous(pB)) {
|
||||||
|
}
|
||||||
|
|
||||||
|
/// print
|
||||||
|
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
|
||||||
|
DefaultKeyFormatter) const {
|
||||||
|
Base::print(s);
|
||||||
|
std::cout << " EssentialMatrixFactor with measurements\n ("
|
||||||
|
<< pA_.vector().transpose() << ")' and (" << pB_.vector().transpose()
|
||||||
|
<< ")'" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// vector of errors returns 1D vector
|
||||||
|
Vector evaluateError(const EssentialMatrix& E, boost::optional<Matrix&> H =
|
||||||
|
boost::none) const {
|
||||||
|
return (Vector(1) << E.error(vA_, vB_, H));
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
} // gtsam
|
||||||
|
|
|
@ -0,0 +1,155 @@
|
||||||
|
/*
|
||||||
|
* @file testEssentialMatrixFactor.cpp
|
||||||
|
* @brief Test EssentialMatrixFactor class
|
||||||
|
* @author Frank Dellaert
|
||||||
|
* @date December 17, 2013
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/slam/EssentialMatrixFactor.h>
|
||||||
|
#include <gtsam/geometry/CalibratedCamera.h>
|
||||||
|
#include <gtsam/base/Testable.h>
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||||
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||||
|
#include <gtsam/base/numericalDerivative.h>
|
||||||
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
|
#include <boost/bind.hpp>
|
||||||
|
#include <boost/assign/std/vector.hpp>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace boost::assign;
|
||||||
|
using namespace gtsam;
|
||||||
|
|
||||||
|
//*************************************************************************
|
||||||
|
// Create two cameras and corresponding essential matrix E
|
||||||
|
Rot3 aRb = Rot3::yaw(M_PI_2);
|
||||||
|
Point3 aTb(0.1, 0, 0);
|
||||||
|
Pose3 identity, aPb(aRb, aTb);
|
||||||
|
typedef CalibratedCamera Cam;
|
||||||
|
Cam cameraA(identity), cameraB(aPb);
|
||||||
|
Matrix aEb_matrix = skewSymmetric(aTb.x(), aTb.y(), aTb.z()) * aRb.matrix();
|
||||||
|
|
||||||
|
// Create test data, we need at least 5 points
|
||||||
|
Point3 P[5] = { Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
|
||||||
|
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5) };
|
||||||
|
|
||||||
|
// Project points in both cameras
|
||||||
|
vector<Point2> pA(5), pB(5);
|
||||||
|
vector<Point2>::iterator //
|
||||||
|
it1 = std::transform(P, P + 5, pA.begin(),
|
||||||
|
boost::bind(&Cam::project, &cameraA, _1, boost::none, boost::none)), //
|
||||||
|
it2 = std::transform(P, P + 5, pB.begin(),
|
||||||
|
boost::bind(&Cam::project, &cameraB, _1, boost::none, boost::none));
|
||||||
|
|
||||||
|
// Converto to homogenous coordinates
|
||||||
|
vector<Vector> vA(5), vB(5);
|
||||||
|
vector<Vector>::iterator //
|
||||||
|
it3 = std::transform(pA.begin(), pA.end(), vA.begin(),
|
||||||
|
&EssentialMatrix::Homogeneous), //
|
||||||
|
it4 = std::transform(pB.begin(), pB.end(), vB.begin(),
|
||||||
|
&EssentialMatrix::Homogeneous);
|
||||||
|
|
||||||
|
//*************************************************************************
|
||||||
|
TEST (EssentialMatrix, testData) {
|
||||||
|
// Check E matrix
|
||||||
|
Matrix expected(3, 3);
|
||||||
|
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
|
||||||
|
EXPECT(assert_equal(expected, aEb_matrix));
|
||||||
|
|
||||||
|
// Check some projections
|
||||||
|
EXPECT(assert_equal(Point2(0,0),pA[0]));
|
||||||
|
EXPECT(assert_equal(Point2(0,0.1),pB[0]));
|
||||||
|
EXPECT(assert_equal(Point2(0,-1),pA[4]));
|
||||||
|
EXPECT(assert_equal(Point2(-1,0.2),pB[4]));
|
||||||
|
|
||||||
|
// Check homogeneous version
|
||||||
|
EXPECT(assert_equal((Vector(3) << -1,0.2,1),vB[4]));
|
||||||
|
|
||||||
|
// Check epipolar constraint
|
||||||
|
for (size_t i = 0; i < 5; i++)
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, vA[i].transpose() * aEb_matrix * vB[i], 1e-8);
|
||||||
|
|
||||||
|
// Check epipolar constraint
|
||||||
|
EssentialMatrix trueE(aRb, aTb);
|
||||||
|
for (size_t i = 0; i < 5; i++)
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA[i],vB[i]), 1e-8);
|
||||||
|
}
|
||||||
|
|
||||||
|
//*************************************************************************
|
||||||
|
TEST (EssentialMatrix, factor) {
|
||||||
|
EssentialMatrix trueE(aRb, aTb);
|
||||||
|
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(1);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < 5; i++) {
|
||||||
|
EssentialMatrixFactor factor(1, pA[i], pB[i], model);
|
||||||
|
|
||||||
|
// Check evaluation
|
||||||
|
Vector expected(1);
|
||||||
|
expected << 0;
|
||||||
|
Matrix HActual;
|
||||||
|
Vector actual = factor.evaluateError(trueE, HActual);
|
||||||
|
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||||
|
|
||||||
|
// Use numerical derivatives to calculate the expected Jacobian
|
||||||
|
Matrix HExpected;
|
||||||
|
HExpected = numericalDerivative11<EssentialMatrix>(
|
||||||
|
boost::bind(&EssentialMatrixFactor::evaluateError, &factor, _1,
|
||||||
|
boost::none), trueE);
|
||||||
|
|
||||||
|
// Verify the Jacobian is correct
|
||||||
|
CHECK(assert_equal(HExpected, HActual, 1e-9));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//*************************************************************************
|
||||||
|
TEST (EssentialMatrix, fromConstraints) {
|
||||||
|
// Here we want to optimize directly on essential matrix constraints
|
||||||
|
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
|
||||||
|
// but GTSAM does the equivalent anyway, provided we give the right
|
||||||
|
// factors. In this case, the factors are the constraints.
|
||||||
|
|
||||||
|
// We start with a factor graph and add constraints to it
|
||||||
|
// Noise sigma is 1cm, assuming metric measurements
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1,0.01);
|
||||||
|
for (size_t i = 0; i < 5; i++)
|
||||||
|
graph.add(EssentialMatrixFactor(1, pA[i], pB[i], model));
|
||||||
|
|
||||||
|
// Check error at ground truth
|
||||||
|
Values truth;
|
||||||
|
EssentialMatrix trueE(aRb, aTb);
|
||||||
|
truth.insert(1, trueE);
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||||
|
|
||||||
|
// Check error at initial estimate
|
||||||
|
Values initial;
|
||||||
|
EssentialMatrix initialE = trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1));
|
||||||
|
initial.insert(1, initialE);
|
||||||
|
EXPECT_DOUBLES_EQUAL(640, graph.error(initial), 1e-2);
|
||||||
|
|
||||||
|
// Optimize
|
||||||
|
LevenbergMarquardtParams parameters;
|
||||||
|
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
|
||||||
|
Values result = optimizer.optimize();
|
||||||
|
|
||||||
|
// Check result
|
||||||
|
EssentialMatrix actual = result.at<EssentialMatrix>(1);
|
||||||
|
EXPECT(assert_equal(trueE, actual,1e-1));
|
||||||
|
|
||||||
|
// Check error at result
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||||
|
|
||||||
|
// Check errors individually
|
||||||
|
for (size_t i = 0; i < 5; i++)
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, actual.error(vA[i],vB[i]), 1e-6);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
int main() {
|
||||||
|
TestResult tr;
|
||||||
|
return TestRegistry::runAllTests(tr);
|
||||||
|
}
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue