Added documentation and format changes.
- Added comments - Clang-formattedrelease/4.3a0
parent
12d422341d
commit
8aed7316a5
|
@ -1,14 +1,43 @@
|
|||
//
|
||||
// Created by Scott on 4/18/2025.
|
||||
//
|
||||
#include <gtsam/nonlinear/LIEKF.h>
|
||||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LIEKF_NavstateExample.cpp
|
||||
* @brief A left invariant Extended Kalman Filter example using the GeneralLIEKF
|
||||
* on NavState using IMU/GPS measurements.
|
||||
*
|
||||
* This example uses the templated GeneralLIEKF class to estimate the state of
|
||||
* an object using IMU/GPS measurements. The prediction stage of the LIEKF uses
|
||||
* a generic dynamics function to predict the state. This simulates a navigation
|
||||
* state of (pose, velocity, position)
|
||||
*
|
||||
* @date Apr 25, 2025
|
||||
* @author Scott Baker
|
||||
* @author Matt Kielo
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
#include <gtsam/navigation/NavState.h>
|
||||
#include <gtsam/nonlinear/LIEKF.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// define dynamics
|
||||
// Define a dynamics function.
|
||||
// The dynamics function for NavState returns a result vector of
|
||||
// size 9 of [angular_velocity, 0, 0, 0, linear_acceleration] as well as
|
||||
// a Jacobian of the dynamics function with respect to the state X.
|
||||
// Since this is a left invariant EKF, the error dynamics do not rely on the
|
||||
// state
|
||||
Vector9 dynamics(const NavState& X, const Vector6& imu,
|
||||
OptionalJacobian<9, 9> H = {}) {
|
||||
const auto a = imu.head<3>();
|
||||
|
@ -21,68 +50,74 @@ Vector9 dynamics(const NavState& X, const Vector6& imu,
|
|||
return result;
|
||||
}
|
||||
|
||||
// define measurement processor
|
||||
Vector3 h_gps(const NavState& X,
|
||||
OptionalJacobian<3,9> H = {}) {
|
||||
// define a GPS measurement processor. The GPS measurement processor returns
|
||||
// the expected measurement h(x) = translation of X with a Jacobian H used in
|
||||
// the update stage of the LIEKF.
|
||||
Vector3 h_gps(const NavState& X, OptionalJacobian<3, 9> H = {}) {
|
||||
if (H) *H << Z_3x3, Z_3x3, X.R();
|
||||
return X.t();
|
||||
}
|
||||
|
||||
int main() {
|
||||
// Initialization
|
||||
// Initialize the filter's state, covariance, and time interval values.
|
||||
NavState X0;
|
||||
Matrix9 P0 = Matrix9::Identity() * 0.1;
|
||||
double dt = 1.0;
|
||||
|
||||
// Create measurement function h_func
|
||||
// Create the measurement function h_func that wraps h_gps
|
||||
GeneralLIEKF<NavState, Vector3, 6>::MeasurementFunction h_func =
|
||||
[](const NavState& X, OptionalJacobian<3, 9> H) { return h_gps(X, H); };
|
||||
|
||||
// Create dynamics
|
||||
// Create the dynamics function dynamics_func
|
||||
GeneralLIEKF<NavState, Vector3, 6>::Dynamics dynamics_func = dynamics;
|
||||
|
||||
// Initialize filter
|
||||
// Create the filter with the initial state, covariance, and dynamics and
|
||||
// measurement functions.
|
||||
GeneralLIEKF<NavState, Vector3, 6> ekf(X0, P0, dynamics_func, h_func);
|
||||
|
||||
// Covariances
|
||||
Matrix9 Q = Matrix9::Identity() * 0.1;
|
||||
Matrix3 R = Matrix3::Identity()*0.01;
|
||||
// Create the process covariance and measurement covariance matrices Q and R.
|
||||
Matrix9 Q = Matrix9::Identity() * 0.01;
|
||||
Matrix3 R = Matrix3::Identity() * 0.5;
|
||||
|
||||
// IMU measurements
|
||||
// Create the IMU measurements of the form (linear_acceleration,
|
||||
// angular_velocity)
|
||||
Vector6 imu1, imu2;
|
||||
imu1 << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
|
||||
imu2 << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
|
||||
|
||||
// GPS measurements
|
||||
// Create the GPS measurements of the form (px, py, pz)
|
||||
Vector3 z1, z2;
|
||||
z1 << 0.0, 0.0, 0.0;
|
||||
z2 << 0.0, 0.0, 0.0;
|
||||
|
||||
// Predict / update stages
|
||||
// Run the predict and update stages, and print their results.
|
||||
cout << "\nInitialization:\n";
|
||||
cout << "X0: " << ekf.getState() << endl;
|
||||
cout << "P0: " << ekf.getCovariance() << endl;
|
||||
|
||||
cout << "X0: " << ekf.state() << endl;
|
||||
cout << "P0: " << ekf.covariance() << endl;
|
||||
|
||||
// First prediction stage
|
||||
ekf.predict(imu1, dt, Q);
|
||||
cout << "\nFirst Prediction:\n";
|
||||
cout << "X: " << ekf.getState() << endl;
|
||||
cout << "P: " << ekf.getCovariance() << endl;
|
||||
cout << "X: " << ekf.state() << endl;
|
||||
cout << "P: " << ekf.covariance() << endl;
|
||||
|
||||
// First update stage
|
||||
ekf.update(z1, R);
|
||||
cout << "\nFirst Update:\n";
|
||||
cout << "X: " << ekf.getState() << endl;
|
||||
cout << "P: " << ekf.getCovariance() << endl;
|
||||
cout << "X: " << ekf.state() << endl;
|
||||
cout << "P: " << ekf.covariance() << endl;
|
||||
|
||||
// Second prediction stage
|
||||
ekf.predict(imu2, dt, Q);
|
||||
cout << "\nSecond Prediction:\n";
|
||||
cout << "X: " << ekf.getState() << endl;
|
||||
cout << "P: " << ekf.getCovariance() << endl;
|
||||
cout << "X: " << ekf.state() << endl;
|
||||
cout << "P: " << ekf.covariance() << endl;
|
||||
|
||||
// Second update stage
|
||||
ekf.update(z2, R);
|
||||
cout << "\nSecond Update:\n";
|
||||
cout << "X: " << ekf.getState() << endl;
|
||||
cout << "P: " << ekf.getCovariance() << endl;
|
||||
cout << "X: " << ekf.state() << endl;
|
||||
cout << "P: " << ekf.covariance() << endl;
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue