diff --git a/gtsam/hybrid/tests/testHybridSmoother.cpp b/gtsam/hybrid/tests/testHybridSmoother.cpp index 145f44d1e..5493ce53e 100644 --- a/gtsam/hybrid/tests/testHybridSmoother.cpp +++ b/gtsam/hybrid/tests/testHybridSmoother.cpp @@ -95,16 +95,15 @@ TEST(HybridSmoother, IncrementalSmoother) { initial.insert(X(k), switching.linearizationPoint.at(X(k))); HybridGaussianFactorGraph linearized = *graph.linearize(initial); - Ordering ordering = smoother.getOrdering(linearized); - smoother.update(linearized, maxNrLeaves, ordering); + smoother.update(linearized, maxNrLeaves); // Clear all the factors from the graph graph.resize(0); } EXPECT_LONGS_EQUAL(11, - smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues()); + smoother.hybridBayesNet().at(3)->asDiscrete()->nrValues()); // Get the continuous delta update as well as // the optimal discrete assignment. @@ -150,16 +149,15 @@ TEST(HybridSmoother, ValidPruningError) { initial.insert(X(k), switching.linearizationPoint.at(X(k))); HybridGaussianFactorGraph linearized = *graph.linearize(initial); - Ordering ordering = smoother.getOrdering(linearized); - smoother.update(linearized, maxNrLeaves, ordering); + smoother.update(linearized, maxNrLeaves); // Clear all the factors from the graph graph.resize(0); } EXPECT_LONGS_EQUAL(14, - smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues()); + smoother.hybridBayesNet().at(6)->asDiscrete()->nrValues()); // Get the continuous delta update as well as // the optimal discrete assignment.