update to add loop closures

release/4.3a0
Varun Agrawal 2025-01-27 23:17:52 -05:00 committed by Frank Dellaert
parent 244a046c67
commit 8ad3216afc
1 changed files with 65 additions and 36 deletions

View File

@ -44,7 +44,7 @@ using symbol_shorthand::M;
using symbol_shorthand::X;
// Testing params
const size_t max_loop_count = 2000; // 2000; // 200 //2000 //8000
const size_t max_loop_count = 3000; // 2000; // 200 //2000 //8000
noiseModel::Diagonal::shared_ptr prior_noise_model =
noiseModel::Diagonal::Sigmas(
@ -76,15 +76,34 @@ void write_results(const Values& results, size_t num_poses,
std::cout << "output written to " << filename << std::endl;
}
// HybridNonlinearFactor LoopClosureHybridFactor() {
// DiscreteKey l(L(loop_counter), 2);
// auto f0 = std::make_shared<BetweenFactor<Pose2>>(
// X(key_s), X(key_t), pose_array[0], pose_noise_model);
// auto f1 = std::make_shared<BetweenFactor<Pose2>>(
// X(key_s), X(key_t), pose_array[1], pose_noise_model);
// std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
// HybridNonlinearFactor mixtureFactor(l, {f0, f1});
// }
/**
* @brief Create a hybrid loop closure factor where
* 0 - loose noise model and 1 - loop noise model.
*
* @param loop_counter
* @param key_s
* @param key_t
* @param measurement
* @return HybridNonlinearFactor
*/
HybridNonlinearFactor HybridLoopClosureFactor(size_t loop_counter, size_t key_s,
size_t key_t,
const Pose2& measurement) {
DiscreteKey l(L(loop_counter), 2);
noiseModel::Diagonal::shared_ptr loop_noise_model =
noiseModel::Diagonal::Sigmas(
Vector3(1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0));
noiseModel::Diagonal::shared_ptr loose_noise_model =
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 100);
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), measurement, loose_noise_model);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), measurement, loop_noise_model);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(l, {f0, f1});
return mixtureFactor;
}
HybridNonlinearFactor HybridOdometryFactor(
size_t num_measurements, size_t key_s, size_t key_t, const DiscreteKey& m,
@ -107,9 +126,7 @@ void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph,
// std::cout << "index: " << index << std::endl;
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother.hybridBayesNet().optimize();
gttoc_(HybridSmootherOptimize);
results->insert_or_assign(initial.retract(delta.continuous()));
}
@ -123,7 +140,7 @@ int main(int argc, char* argv[]) {
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
size_t discrete_count = 0, index = 0;
size_t pose_count = 0, loop_count = 0;
size_t loop_count = 0;
size_t nrHybridFactors = 0;
std::list<double> time_list;
@ -160,9 +177,6 @@ int main(int argc, char* argv[]) {
key_s = stoi(parts[1]);
key_t = stoi(parts[3]);
int empty = stoi(parts[4]); // 0 or 1
bool allow_empty = !(empty == 0);
int num_measurements = stoi(parts[5]);
vector<Pose2> pose_array(num_measurements);
for (int i = 0; i < num_measurements; ++i) {
@ -179,33 +193,41 @@ int main(int argc, char* argv[]) {
Pose2 odom_pose = pose_array[0];
if (key_s == key_t - 1) { // odometry
if (num_measurements > 1) {
DiscreteKey m(M(discrete_count), num_measurements);
// graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
// Add hybrid factor which considers both measurements
HybridNonlinearFactor mixtureFactor = HybridOdometryFactor(
num_measurements, key_s, key_t, m, pose_array, pose_noise_model);
graph.push_back(mixtureFactor);
discrete_count++;
smoother_update = true;
} else {
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
pose_noise_model));
}
init_values.insert(X(key_t), init_values.at<Pose2>(X(key_s)) * odom_pose);
pose_count++;
} else { // loop
loop_count++;
}
if (num_measurements > 1) {
DiscreteKey m(M(discrete_count), num_measurements);
graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
// Add hybrid factor which considers both measurements
HybridNonlinearFactor mixtureFactor = HybridOdometryFactor(
num_measurements, key_s, key_t, m, pose_array, pose_noise_model);
graph.push_back(mixtureFactor);
discrete_count++;
HybridNonlinearFactor loop_factor =
HybridLoopClosureFactor(loop_count, key_s, key_t, odom_pose);
graph.add(loop_factor);
smoother_update = true;
} else {
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
pose_noise_model));
loop_count++;
}
if (smoother_update) {
gttic_(SmootherUpdate);
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
init_values.update(results);
gttoc_(SmootherUpdate);
}
// Print loop index and time taken in processor clock ticks
@ -216,7 +238,7 @@ int main(int argc, char* argv[]) {
<< std::endl;
// delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_();
// tictoc_print_();
tictoc_print_();
}
if (key_s == key_t - 1) {
@ -229,15 +251,22 @@ int main(int argc, char* argv[]) {
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother.hybridBayesNet().optimize();
gttoc_(HybridSmootherOptimize);
results.insert_or_assign(init_values.retract(delta.continuous()));
std::cout << "Final error: " << smoother.hybridBayesNet().error(delta)
<< std::endl;
clock_t end_time = clock();
clock_t total_time = end_time - start_time;
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl;
/// Write results to file
write_results(results, (key_t + 1), "HybridISAM_city10000.txt");
write_results(results, (key_t + 1), "Hybrid_City10000.txt");
ofstream outfile_time;
std::string time_file_name = "HybridISAM_city10000_time.txt";
std::string time_file_name = "Hybrid_City10000_time.txt";
outfile_time.open(time_file_name);
for (auto acc_time : time_list) {
outfile_time << acc_time << std::endl;