update to add loop closures
parent
244a046c67
commit
8ad3216afc
|
@ -44,7 +44,7 @@ using symbol_shorthand::M;
|
|||
using symbol_shorthand::X;
|
||||
|
||||
// Testing params
|
||||
const size_t max_loop_count = 2000; // 2000; // 200 //2000 //8000
|
||||
const size_t max_loop_count = 3000; // 2000; // 200 //2000 //8000
|
||||
|
||||
noiseModel::Diagonal::shared_ptr prior_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
|
@ -76,15 +76,34 @@ void write_results(const Values& results, size_t num_poses,
|
|||
std::cout << "output written to " << filename << std::endl;
|
||||
}
|
||||
|
||||
// HybridNonlinearFactor LoopClosureHybridFactor() {
|
||||
// DiscreteKey l(L(loop_counter), 2);
|
||||
// auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
// X(key_s), X(key_t), pose_array[0], pose_noise_model);
|
||||
// auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
// X(key_s), X(key_t), pose_array[1], pose_noise_model);
|
||||
// std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
|
||||
// HybridNonlinearFactor mixtureFactor(l, {f0, f1});
|
||||
// }
|
||||
/**
|
||||
* @brief Create a hybrid loop closure factor where
|
||||
* 0 - loose noise model and 1 - loop noise model.
|
||||
*
|
||||
* @param loop_counter
|
||||
* @param key_s
|
||||
* @param key_t
|
||||
* @param measurement
|
||||
* @return HybridNonlinearFactor
|
||||
*/
|
||||
HybridNonlinearFactor HybridLoopClosureFactor(size_t loop_counter, size_t key_s,
|
||||
size_t key_t,
|
||||
const Pose2& measurement) {
|
||||
DiscreteKey l(L(loop_counter), 2);
|
||||
noiseModel::Diagonal::shared_ptr loop_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
Vector3(1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0));
|
||||
noiseModel::Diagonal::shared_ptr loose_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 100);
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), measurement, loose_noise_model);
|
||||
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), measurement, loop_noise_model);
|
||||
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
|
||||
HybridNonlinearFactor mixtureFactor(l, {f0, f1});
|
||||
return mixtureFactor;
|
||||
}
|
||||
|
||||
HybridNonlinearFactor HybridOdometryFactor(
|
||||
size_t num_measurements, size_t key_s, size_t key_t, const DiscreteKey& m,
|
||||
|
@ -107,9 +126,7 @@ void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph,
|
|||
// std::cout << "index: " << index << std::endl;
|
||||
smoother.update(linearized, maxNrHypotheses);
|
||||
graph.resize(0);
|
||||
gttic_(HybridSmootherOptimize);
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
gttoc_(HybridSmootherOptimize);
|
||||
results->insert_or_assign(initial.retract(delta.continuous()));
|
||||
}
|
||||
|
||||
|
@ -123,7 +140,7 @@ int main(int argc, char* argv[]) {
|
|||
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
|
||||
|
||||
size_t discrete_count = 0, index = 0;
|
||||
size_t pose_count = 0, loop_count = 0;
|
||||
size_t loop_count = 0;
|
||||
size_t nrHybridFactors = 0;
|
||||
|
||||
std::list<double> time_list;
|
||||
|
@ -160,9 +177,6 @@ int main(int argc, char* argv[]) {
|
|||
key_s = stoi(parts[1]);
|
||||
key_t = stoi(parts[3]);
|
||||
|
||||
int empty = stoi(parts[4]); // 0 or 1
|
||||
bool allow_empty = !(empty == 0);
|
||||
|
||||
int num_measurements = stoi(parts[5]);
|
||||
vector<Pose2> pose_array(num_measurements);
|
||||
for (int i = 0; i < num_measurements; ++i) {
|
||||
|
@ -179,33 +193,41 @@ int main(int argc, char* argv[]) {
|
|||
Pose2 odom_pose = pose_array[0];
|
||||
if (key_s == key_t - 1) { // odometry
|
||||
|
||||
if (num_measurements > 1) {
|
||||
DiscreteKey m(M(discrete_count), num_measurements);
|
||||
// graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
|
||||
|
||||
// Add hybrid factor which considers both measurements
|
||||
HybridNonlinearFactor mixtureFactor = HybridOdometryFactor(
|
||||
num_measurements, key_s, key_t, m, pose_array, pose_noise_model);
|
||||
graph.push_back(mixtureFactor);
|
||||
|
||||
discrete_count++;
|
||||
|
||||
smoother_update = true;
|
||||
|
||||
} else {
|
||||
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
}
|
||||
|
||||
init_values.insert(X(key_t), init_values.at<Pose2>(X(key_s)) * odom_pose);
|
||||
pose_count++;
|
||||
|
||||
} else { // loop
|
||||
loop_count++;
|
||||
}
|
||||
|
||||
if (num_measurements > 1) {
|
||||
DiscreteKey m(M(discrete_count), num_measurements);
|
||||
graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
|
||||
|
||||
// Add hybrid factor which considers both measurements
|
||||
HybridNonlinearFactor mixtureFactor = HybridOdometryFactor(
|
||||
num_measurements, key_s, key_t, m, pose_array, pose_noise_model);
|
||||
graph.push_back(mixtureFactor);
|
||||
|
||||
discrete_count++;
|
||||
HybridNonlinearFactor loop_factor =
|
||||
HybridLoopClosureFactor(loop_count, key_s, key_t, odom_pose);
|
||||
graph.add(loop_factor);
|
||||
|
||||
smoother_update = true;
|
||||
|
||||
} else {
|
||||
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
loop_count++;
|
||||
}
|
||||
|
||||
if (smoother_update) {
|
||||
gttic_(SmootherUpdate);
|
||||
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
|
||||
init_values.update(results);
|
||||
gttoc_(SmootherUpdate);
|
||||
}
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
|
@ -216,7 +238,7 @@ int main(int argc, char* argv[]) {
|
|||
<< std::endl;
|
||||
// delta.discrete().print("The Discrete Assignment");
|
||||
tictoc_finishedIteration_();
|
||||
// tictoc_print_();
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) {
|
||||
|
@ -229,15 +251,22 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
|
||||
|
||||
gttic_(HybridSmootherOptimize);
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
gttoc_(HybridSmootherOptimize);
|
||||
results.insert_or_assign(init_values.retract(delta.continuous()));
|
||||
|
||||
std::cout << "Final error: " << smoother.hybridBayesNet().error(delta)
|
||||
<< std::endl;
|
||||
clock_t end_time = clock();
|
||||
clock_t total_time = end_time - start_time;
|
||||
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl;
|
||||
|
||||
/// Write results to file
|
||||
write_results(results, (key_t + 1), "HybridISAM_city10000.txt");
|
||||
write_results(results, (key_t + 1), "Hybrid_City10000.txt");
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "HybridISAM_city10000_time.txt";
|
||||
std::string time_file_name = "Hybrid_City10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : time_list) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
|
|
Loading…
Reference in New Issue