A zero noiseModel_ never worked for NoiseModelFactor, regularizing this by explicit check
parent
1dddb4046a
commit
8a196eb86e
|
|
@ -73,20 +73,26 @@ bool NoiseModelFactor::equals(const NonlinearFactor& f, double tol) const {
|
|||
}
|
||||
|
||||
Vector NoiseModelFactor::whitenedError(const Values& c) const {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
const Vector b = unwhitenedError(c);
|
||||
if ((size_t) b.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return noiseModel_->whiten(unwhitenedErrorVec);
|
||||
return noiseModel_->whiten(b);
|
||||
}
|
||||
|
||||
static void check(const SharedNoiseModel& noiseModel, const Vector& b) {
|
||||
if (!noiseModel)
|
||||
throw std::invalid_argument("NoiseModelFactor: no NoiseModel.");
|
||||
if ((size_t) b.size() != noiseModel->dim())
|
||||
throw std::invalid_argument(
|
||||
"NoiseModelFactor was created with a NoiseModel of incorrect dimension.");
|
||||
}
|
||||
|
||||
double NoiseModelFactor::error(const Values& c) const {
|
||||
if (this->active(c)) {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return 0.5 * noiseModel_->distance(unwhitenedErrorVec);
|
||||
const Vector b = unwhitenedError(c);
|
||||
check(noiseModel_, b);
|
||||
return 0.5 * noiseModel_->distance(b);
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
|
|
@ -102,14 +108,10 @@ boost::shared_ptr<GaussianFactor> NoiseModelFactor::linearize(
|
|||
// Call evaluate error to get Jacobians and RHS vector b
|
||||
std::vector<Matrix> A(this->size());
|
||||
Vector b = -unwhitenedError(x, A);
|
||||
check(noiseModel_, b);
|
||||
|
||||
// If a noiseModel is given, whiten the corresponding system now
|
||||
if (noiseModel_) {
|
||||
if ((size_t) b.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
this->noiseModel_->WhitenSystem(A, b);
|
||||
}
|
||||
// Whiten the corresponding system now
|
||||
this->noiseModel_->WhitenSystem(A, b);
|
||||
|
||||
// Fill in terms, needed to create JacobianFactor below
|
||||
std::vector<std::pair<Key, Matrix> > terms(this->size());
|
||||
|
|
@ -120,18 +122,15 @@ boost::shared_ptr<GaussianFactor> NoiseModelFactor::linearize(
|
|||
|
||||
// TODO pass unwhitened + noise model to Gaussian factor
|
||||
// For now, only linearized constrained factors have noise model at linear level!!!
|
||||
if (noiseModel_) {
|
||||
noiseModel::Constrained::shared_ptr constrained =
|
||||
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
|
||||
if (constrained) {
|
||||
// Create a factor of reduced row dimension d_
|
||||
size_t d_ = terms[0].second.rows() - constrained->dim();
|
||||
Vector zero_ = zero(d_);
|
||||
Vector b_ = concatVectors(2, &b, &zero_);
|
||||
noiseModel::Constrained::shared_ptr model = constrained->unit(d_);
|
||||
return boost::make_shared<JacobianFactor>(terms, b_, model);
|
||||
} else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
noiseModel::Constrained::shared_ptr constrained = //
|
||||
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
|
||||
if (constrained) {
|
||||
// Create a factor of reduced row dimension d_
|
||||
size_t d_ = terms[0].second.rows() - constrained->dim();
|
||||
Vector zero_ = zero(d_);
|
||||
Vector b_ = concatVectors(2, &b, &zero_);
|
||||
noiseModel::Constrained::shared_ptr model = constrained->unit(d_);
|
||||
return boost::make_shared<JacobianFactor>(terms, b_, model);
|
||||
} else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue