A zero noiseModel_ never worked for NoiseModelFactor, regularizing this by explicit check

release/4.3a0
dellaert 2014-10-02 11:01:14 +02:00
parent 1dddb4046a
commit 8a196eb86e
1 changed files with 26 additions and 27 deletions

View File

@ -73,20 +73,26 @@ bool NoiseModelFactor::equals(const NonlinearFactor& f, double tol) const {
}
Vector NoiseModelFactor::whitenedError(const Values& c) const {
const Vector unwhitenedErrorVec = unwhitenedError(c);
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
const Vector b = unwhitenedError(c);
if ((size_t) b.size() != noiseModel_->dim())
throw std::invalid_argument(
"This factor was created with a NoiseModel of incorrect dimension.");
return noiseModel_->whiten(unwhitenedErrorVec);
return noiseModel_->whiten(b);
}
static void check(const SharedNoiseModel& noiseModel, const Vector& b) {
if (!noiseModel)
throw std::invalid_argument("NoiseModelFactor: no NoiseModel.");
if ((size_t) b.size() != noiseModel->dim())
throw std::invalid_argument(
"NoiseModelFactor was created with a NoiseModel of incorrect dimension.");
}
double NoiseModelFactor::error(const Values& c) const {
if (this->active(c)) {
const Vector unwhitenedErrorVec = unwhitenedError(c);
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
throw std::invalid_argument(
"This factor was created with a NoiseModel of incorrect dimension.");
return 0.5 * noiseModel_->distance(unwhitenedErrorVec);
const Vector b = unwhitenedError(c);
check(noiseModel_, b);
return 0.5 * noiseModel_->distance(b);
} else {
return 0.0;
}
@ -102,14 +108,10 @@ boost::shared_ptr<GaussianFactor> NoiseModelFactor::linearize(
// Call evaluate error to get Jacobians and RHS vector b
std::vector<Matrix> A(this->size());
Vector b = -unwhitenedError(x, A);
check(noiseModel_, b);
// If a noiseModel is given, whiten the corresponding system now
if (noiseModel_) {
if ((size_t) b.size() != noiseModel_->dim())
throw std::invalid_argument(
"This factor was created with a NoiseModel of incorrect dimension.");
this->noiseModel_->WhitenSystem(A, b);
}
// Whiten the corresponding system now
this->noiseModel_->WhitenSystem(A, b);
// Fill in terms, needed to create JacobianFactor below
std::vector<std::pair<Key, Matrix> > terms(this->size());
@ -120,18 +122,15 @@ boost::shared_ptr<GaussianFactor> NoiseModelFactor::linearize(
// TODO pass unwhitened + noise model to Gaussian factor
// For now, only linearized constrained factors have noise model at linear level!!!
if (noiseModel_) {
noiseModel::Constrained::shared_ptr constrained =
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
if (constrained) {
// Create a factor of reduced row dimension d_
size_t d_ = terms[0].second.rows() - constrained->dim();
Vector zero_ = zero(d_);
Vector b_ = concatVectors(2, &b, &zero_);
noiseModel::Constrained::shared_ptr model = constrained->unit(d_);
return boost::make_shared<JacobianFactor>(terms, b_, model);
} else
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
noiseModel::Constrained::shared_ptr constrained = //
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
if (constrained) {
// Create a factor of reduced row dimension d_
size_t d_ = terms[0].second.rows() - constrained->dim();
Vector zero_ = zero(d_);
Vector b_ = concatVectors(2, &b, &zero_);
noiseModel::Constrained::shared_ptr model = constrained->unit(d_);
return boost::make_shared<JacobianFactor>(terms, b_, model);
} else
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
}