Remove eigency

release/4.3a0
Fan Jiang 2020-08-18 11:00:11 -04:00
parent 6604b4f45b
commit 8a130c1a54
8 changed files with 0 additions and 1886 deletions

View File

@ -1,42 +0,0 @@
include(GtsamCythonWrap)
# Copy eigency's sources to the build folder
# so that the cython-generated header "conversions_api.h" can be found when cythonizing eigency's core
# and eigency's cython pxd headers can be found when cythonizing gtsam
file(COPY "." DESTINATION ".")
set(OUTPUT_DIR "${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency")
set(EIGENCY_INCLUDE_DIR ${OUTPUT_DIR})
# This is to make the build/cython/gtsam_eigency folder a python package
configure_file(__init__.py.in ${OUTPUT_DIR}/__init__.py)
# include eigency headers
include_directories(${EIGENCY_INCLUDE_DIR})
# Cythonize and build eigency
message(STATUS "Cythonize and build eigency")
# Important trick: use "../gtsam_eigency/conversions.pyx" to let cython know that the conversions module is
# a part of the gtsam_eigency package and generate the function call import_gtsam_eigency__conversions()
# in conversions_api.h correctly!
cythonize(cythonize_eigency_conversions "../gtsam_eigency/conversions.pyx" "conversions"
"${OUTPUT_DIR}" "${EIGENCY_INCLUDE_DIR}" "" "" "")
cythonize(cythonize_eigency_core "../gtsam_eigency/core.pyx" "core"
${OUTPUT_DIR} "${EIGENCY_INCLUDE_DIR}" "" "" "")
# Include Eigen headers:
target_include_directories(cythonize_eigency_conversions PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
target_include_directories(cythonize_eigency_core PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
add_dependencies(cythonize_eigency_core cythonize_eigency_conversions)
add_custom_target(cythonize_eigency)
add_dependencies(cythonize_eigency cythonize_eigency_conversions cythonize_eigency_core)
if(TARGET ${python_install_target})
add_dependencies(${python_install_target} cythonize_eigency)
endif()

View File

@ -1,20 +0,0 @@
Copyright (c) 2016 Wouter Boomsma
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,13 +0,0 @@
import os
import numpy as np
__eigen_dir__ = "${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}"
def get_includes(include_eigen=True):
root = os.path.dirname(__file__)
parent = os.path.join(root, "..")
path = [root, parent, np.get_include()]
if include_eigen:
path.append(os.path.join(root, __eigen_dir__))
return path

View File

@ -1,62 +0,0 @@
cimport numpy as np
cdef api np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)

View File

@ -1,327 +0,0 @@
cimport cython
import numpy as np
from numpy.lib.stride_tricks import as_strided
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[:,:] mem_view = <double[:rows,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[:,:] mem_view = <double[:rows,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[:,:] mem_view = <float[:rows,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[:,:] mem_view = <float[:rows,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[:,:] mem_view = <long[:rows,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[:,:] mem_view = <long[:rows,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[:,:] mem_view = <int[:rows,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[:,:] mem_view = <int[:rows,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[:,:] mem_view = <short[:rows,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[:,:] mem_view = <short[:rows,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))

View File

@ -1,917 +0,0 @@
cimport cython
cimport numpy as np
ctypedef signed char schar;
ctypedef unsigned char uchar;
ctypedef fused dtype:
uchar
schar
short
int
long
float
double
ctypedef fused DenseType:
Matrix
Array
ctypedef fused Rows:
_1
_2
_3
_4
_5
_6
_7
_8
_9
_10
_11
_12
_13
_14
_15
_16
_17
_18
_19
_20
_21
_22
_23
_24
_25
_26
_27
_28
_29
_30
_31
_32
Dynamic
ctypedef Rows Cols
ctypedef Rows StrideOuter
ctypedef Rows StrideInner
ctypedef fused DenseTypeShort:
Vector1i
Vector2i
Vector3i
Vector4i
VectorXi
RowVector1i
RowVector2i
RowVector3i
RowVector4i
RowVectorXi
Matrix1i
Matrix2i
Matrix3i
Matrix4i
MatrixXi
Vector1f
Vector2f
Vector3f
Vector4f
VectorXf
RowVector1f
RowVector2f
RowVector3f
RowVector4f
RowVectorXf
Matrix1f
Matrix2f
Matrix3f
Matrix4f
MatrixXf
Vector1d
Vector2d
Vector3d
Vector4d
VectorXd
RowVector1d
RowVector2d
RowVector3d
RowVector4d
RowVectorXd
Matrix1d
Matrix2d
Matrix3d
Matrix4d
MatrixXd
Vector1cf
Vector2cf
Vector3cf
Vector4cf
VectorXcf
RowVector1cf
RowVector2cf
RowVector3cf
RowVector4cf
RowVectorXcf
Matrix1cf
Matrix2cf
Matrix3cf
Matrix4cf
MatrixXcf
Vector1cd
Vector2cd
Vector3cd
Vector4cd
VectorXcd
RowVector1cd
RowVector2cd
RowVector3cd
RowVector4cd
RowVectorXcd
Matrix1cd
Matrix2cd
Matrix3cd
Matrix4cd
MatrixXcd
Array22i
Array23i
Array24i
Array2Xi
Array32i
Array33i
Array34i
Array3Xi
Array42i
Array43i
Array44i
Array4Xi
ArrayX2i
ArrayX3i
ArrayX4i
ArrayXXi
Array2i
Array3i
Array4i
ArrayXi
Array22f
Array23f
Array24f
Array2Xf
Array32f
Array33f
Array34f
Array3Xf
Array42f
Array43f
Array44f
Array4Xf
ArrayX2f
ArrayX3f
ArrayX4f
ArrayXXf
Array2f
Array3f
Array4f
ArrayXf
Array22d
Array23d
Array24d
Array2Xd
Array32d
Array33d
Array34d
Array3Xd
Array42d
Array43d
Array44d
Array4Xd
ArrayX2d
ArrayX3d
ArrayX4d
ArrayXXd
Array2d
Array3d
Array4d
ArrayXd
Array22cf
Array23cf
Array24cf
Array2Xcf
Array32cf
Array33cf
Array34cf
Array3Xcf
Array42cf
Array43cf
Array44cf
Array4Xcf
ArrayX2cf
ArrayX3cf
ArrayX4cf
ArrayXXcf
Array2cf
Array3cf
Array4cf
ArrayXcf
Array22cd
Array23cd
Array24cd
Array2Xcd
Array32cd
Array33cd
Array34cd
Array3Xcd
Array42cd
Array43cd
Array44cd
Array4Xcd
ArrayX2cd
ArrayX3cd
ArrayX4cd
ArrayXXcd
Array2cd
Array3cd
Array4cd
ArrayXcd
ctypedef fused StorageOrder:
RowMajor
ColMajor
ctypedef fused MapOptions:
Aligned
Unaligned
cdef extern from "eigency_cpp.h" namespace "eigency":
cdef cppclass _1 "1":
pass
cdef cppclass _2 "2":
pass
cdef cppclass _3 "3":
pass
cdef cppclass _4 "4":
pass
cdef cppclass _5 "5":
pass
cdef cppclass _6 "6":
pass
cdef cppclass _7 "7":
pass
cdef cppclass _8 "8":
pass
cdef cppclass _9 "9":
pass
cdef cppclass _10 "10":
pass
cdef cppclass _11 "11":
pass
cdef cppclass _12 "12":
pass
cdef cppclass _13 "13":
pass
cdef cppclass _14 "14":
pass
cdef cppclass _15 "15":
pass
cdef cppclass _16 "16":
pass
cdef cppclass _17 "17":
pass
cdef cppclass _18 "18":
pass
cdef cppclass _19 "19":
pass
cdef cppclass _20 "20":
pass
cdef cppclass _21 "21":
pass
cdef cppclass _22 "22":
pass
cdef cppclass _23 "23":
pass
cdef cppclass _24 "24":
pass
cdef cppclass _25 "25":
pass
cdef cppclass _26 "26":
pass
cdef cppclass _27 "27":
pass
cdef cppclass _28 "28":
pass
cdef cppclass _29 "29":
pass
cdef cppclass _30 "30":
pass
cdef cppclass _31 "31":
pass
cdef cppclass _32 "32":
pass
cdef cppclass PlainObjectBase:
pass
cdef cppclass Map[DenseTypeShort](PlainObjectBase):
Map() except +
Map(np.ndarray array) except +
cdef cppclass FlattenedMap[DenseType, dtype, Rows, Cols]:
FlattenedMap() except +
FlattenedMap(np.ndarray array) except +
cdef cppclass FlattenedMapWithOrder "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder]:
FlattenedMapWithOrder() except +
FlattenedMapWithOrder(np.ndarray array) except +
cdef cppclass FlattenedMapWithStride "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder, MapOptions, StrideOuter, StrideInner]:
FlattenedMapWithStride() except +
FlattenedMapWithStride(np.ndarray array) except +
cdef np.ndarray ndarray_view(PlainObjectBase &)
cdef np.ndarray ndarray_copy(PlainObjectBase &)
cdef np.ndarray ndarray(PlainObjectBase &)
cdef extern from "eigency_cpp.h" namespace "Eigen":
cdef cppclass Dynamic:
pass
cdef cppclass RowMajor:
pass
cdef cppclass ColMajor:
pass
cdef cppclass Aligned:
pass
cdef cppclass Unaligned:
pass
cdef cppclass Matrix(PlainObjectBase):
pass
cdef cppclass Array(PlainObjectBase):
pass
cdef cppclass VectorXd(PlainObjectBase):
pass
cdef cppclass Vector1i(PlainObjectBase):
pass
cdef cppclass Vector2i(PlainObjectBase):
pass
cdef cppclass Vector3i(PlainObjectBase):
pass
cdef cppclass Vector4i(PlainObjectBase):
pass
cdef cppclass VectorXi(PlainObjectBase):
pass
cdef cppclass RowVector1i(PlainObjectBase):
pass
cdef cppclass RowVector2i(PlainObjectBase):
pass
cdef cppclass RowVector3i(PlainObjectBase):
pass
cdef cppclass RowVector4i(PlainObjectBase):
pass
cdef cppclass RowVectorXi(PlainObjectBase):
pass
cdef cppclass Matrix1i(PlainObjectBase):
pass
cdef cppclass Matrix2i(PlainObjectBase):
pass
cdef cppclass Matrix3i(PlainObjectBase):
pass
cdef cppclass Matrix4i(PlainObjectBase):
pass
cdef cppclass MatrixXi(PlainObjectBase):
pass
cdef cppclass Vector1f(PlainObjectBase):
pass
cdef cppclass Vector2f(PlainObjectBase):
pass
cdef cppclass Vector3f(PlainObjectBase):
pass
cdef cppclass Vector4f(PlainObjectBase):
pass
cdef cppclass VectorXf(PlainObjectBase):
pass
cdef cppclass RowVector1f(PlainObjectBase):
pass
cdef cppclass RowVector2f(PlainObjectBase):
pass
cdef cppclass RowVector3f(PlainObjectBase):
pass
cdef cppclass RowVector4f(PlainObjectBase):
pass
cdef cppclass RowVectorXf(PlainObjectBase):
pass
cdef cppclass Matrix1f(PlainObjectBase):
pass
cdef cppclass Matrix2f(PlainObjectBase):
pass
cdef cppclass Matrix3f(PlainObjectBase):
pass
cdef cppclass Matrix4f(PlainObjectBase):
pass
cdef cppclass MatrixXf(PlainObjectBase):
pass
cdef cppclass Vector1d(PlainObjectBase):
pass
cdef cppclass Vector2d(PlainObjectBase):
pass
cdef cppclass Vector3d(PlainObjectBase):
pass
cdef cppclass Vector4d(PlainObjectBase):
pass
cdef cppclass VectorXd(PlainObjectBase):
pass
cdef cppclass RowVector1d(PlainObjectBase):
pass
cdef cppclass RowVector2d(PlainObjectBase):
pass
cdef cppclass RowVector3d(PlainObjectBase):
pass
cdef cppclass RowVector4d(PlainObjectBase):
pass
cdef cppclass RowVectorXd(PlainObjectBase):
pass
cdef cppclass Matrix1d(PlainObjectBase):
pass
cdef cppclass Matrix2d(PlainObjectBase):
pass
cdef cppclass Matrix3d(PlainObjectBase):
pass
cdef cppclass Matrix4d(PlainObjectBase):
pass
cdef cppclass MatrixXd(PlainObjectBase):
pass
cdef cppclass Vector1cf(PlainObjectBase):
pass
cdef cppclass Vector2cf(PlainObjectBase):
pass
cdef cppclass Vector3cf(PlainObjectBase):
pass
cdef cppclass Vector4cf(PlainObjectBase):
pass
cdef cppclass VectorXcf(PlainObjectBase):
pass
cdef cppclass RowVector1cf(PlainObjectBase):
pass
cdef cppclass RowVector2cf(PlainObjectBase):
pass
cdef cppclass RowVector3cf(PlainObjectBase):
pass
cdef cppclass RowVector4cf(PlainObjectBase):
pass
cdef cppclass RowVectorXcf(PlainObjectBase):
pass
cdef cppclass Matrix1cf(PlainObjectBase):
pass
cdef cppclass Matrix2cf(PlainObjectBase):
pass
cdef cppclass Matrix3cf(PlainObjectBase):
pass
cdef cppclass Matrix4cf(PlainObjectBase):
pass
cdef cppclass MatrixXcf(PlainObjectBase):
pass
cdef cppclass Vector1cd(PlainObjectBase):
pass
cdef cppclass Vector2cd(PlainObjectBase):
pass
cdef cppclass Vector3cd(PlainObjectBase):
pass
cdef cppclass Vector4cd(PlainObjectBase):
pass
cdef cppclass VectorXcd(PlainObjectBase):
pass
cdef cppclass RowVector1cd(PlainObjectBase):
pass
cdef cppclass RowVector2cd(PlainObjectBase):
pass
cdef cppclass RowVector3cd(PlainObjectBase):
pass
cdef cppclass RowVector4cd(PlainObjectBase):
pass
cdef cppclass RowVectorXcd(PlainObjectBase):
pass
cdef cppclass Matrix1cd(PlainObjectBase):
pass
cdef cppclass Matrix2cd(PlainObjectBase):
pass
cdef cppclass Matrix3cd(PlainObjectBase):
pass
cdef cppclass Matrix4cd(PlainObjectBase):
pass
cdef cppclass MatrixXcd(PlainObjectBase):
pass
cdef cppclass Array22i(PlainObjectBase):
pass
cdef cppclass Array23i(PlainObjectBase):
pass
cdef cppclass Array24i(PlainObjectBase):
pass
cdef cppclass Array2Xi(PlainObjectBase):
pass
cdef cppclass Array32i(PlainObjectBase):
pass
cdef cppclass Array33i(PlainObjectBase):
pass
cdef cppclass Array34i(PlainObjectBase):
pass
cdef cppclass Array3Xi(PlainObjectBase):
pass
cdef cppclass Array42i(PlainObjectBase):
pass
cdef cppclass Array43i(PlainObjectBase):
pass
cdef cppclass Array44i(PlainObjectBase):
pass
cdef cppclass Array4Xi(PlainObjectBase):
pass
cdef cppclass ArrayX2i(PlainObjectBase):
pass
cdef cppclass ArrayX3i(PlainObjectBase):
pass
cdef cppclass ArrayX4i(PlainObjectBase):
pass
cdef cppclass ArrayXXi(PlainObjectBase):
pass
cdef cppclass Array2i(PlainObjectBase):
pass
cdef cppclass Array3i(PlainObjectBase):
pass
cdef cppclass Array4i(PlainObjectBase):
pass
cdef cppclass ArrayXi(PlainObjectBase):
pass
cdef cppclass Array22f(PlainObjectBase):
pass
cdef cppclass Array23f(PlainObjectBase):
pass
cdef cppclass Array24f(PlainObjectBase):
pass
cdef cppclass Array2Xf(PlainObjectBase):
pass
cdef cppclass Array32f(PlainObjectBase):
pass
cdef cppclass Array33f(PlainObjectBase):
pass
cdef cppclass Array34f(PlainObjectBase):
pass
cdef cppclass Array3Xf(PlainObjectBase):
pass
cdef cppclass Array42f(PlainObjectBase):
pass
cdef cppclass Array43f(PlainObjectBase):
pass
cdef cppclass Array44f(PlainObjectBase):
pass
cdef cppclass Array4Xf(PlainObjectBase):
pass
cdef cppclass ArrayX2f(PlainObjectBase):
pass
cdef cppclass ArrayX3f(PlainObjectBase):
pass
cdef cppclass ArrayX4f(PlainObjectBase):
pass
cdef cppclass ArrayXXf(PlainObjectBase):
pass
cdef cppclass Array2f(PlainObjectBase):
pass
cdef cppclass Array3f(PlainObjectBase):
pass
cdef cppclass Array4f(PlainObjectBase):
pass
cdef cppclass ArrayXf(PlainObjectBase):
pass
cdef cppclass Array22d(PlainObjectBase):
pass
cdef cppclass Array23d(PlainObjectBase):
pass
cdef cppclass Array24d(PlainObjectBase):
pass
cdef cppclass Array2Xd(PlainObjectBase):
pass
cdef cppclass Array32d(PlainObjectBase):
pass
cdef cppclass Array33d(PlainObjectBase):
pass
cdef cppclass Array34d(PlainObjectBase):
pass
cdef cppclass Array3Xd(PlainObjectBase):
pass
cdef cppclass Array42d(PlainObjectBase):
pass
cdef cppclass Array43d(PlainObjectBase):
pass
cdef cppclass Array44d(PlainObjectBase):
pass
cdef cppclass Array4Xd(PlainObjectBase):
pass
cdef cppclass ArrayX2d(PlainObjectBase):
pass
cdef cppclass ArrayX3d(PlainObjectBase):
pass
cdef cppclass ArrayX4d(PlainObjectBase):
pass
cdef cppclass ArrayXXd(PlainObjectBase):
pass
cdef cppclass Array2d(PlainObjectBase):
pass
cdef cppclass Array3d(PlainObjectBase):
pass
cdef cppclass Array4d(PlainObjectBase):
pass
cdef cppclass ArrayXd(PlainObjectBase):
pass
cdef cppclass Array22cf(PlainObjectBase):
pass
cdef cppclass Array23cf(PlainObjectBase):
pass
cdef cppclass Array24cf(PlainObjectBase):
pass
cdef cppclass Array2Xcf(PlainObjectBase):
pass
cdef cppclass Array32cf(PlainObjectBase):
pass
cdef cppclass Array33cf(PlainObjectBase):
pass
cdef cppclass Array34cf(PlainObjectBase):
pass
cdef cppclass Array3Xcf(PlainObjectBase):
pass
cdef cppclass Array42cf(PlainObjectBase):
pass
cdef cppclass Array43cf(PlainObjectBase):
pass
cdef cppclass Array44cf(PlainObjectBase):
pass
cdef cppclass Array4Xcf(PlainObjectBase):
pass
cdef cppclass ArrayX2cf(PlainObjectBase):
pass
cdef cppclass ArrayX3cf(PlainObjectBase):
pass
cdef cppclass ArrayX4cf(PlainObjectBase):
pass
cdef cppclass ArrayXXcf(PlainObjectBase):
pass
cdef cppclass Array2cf(PlainObjectBase):
pass
cdef cppclass Array3cf(PlainObjectBase):
pass
cdef cppclass Array4cf(PlainObjectBase):
pass
cdef cppclass ArrayXcf(PlainObjectBase):
pass
cdef cppclass Array22cd(PlainObjectBase):
pass
cdef cppclass Array23cd(PlainObjectBase):
pass
cdef cppclass Array24cd(PlainObjectBase):
pass
cdef cppclass Array2Xcd(PlainObjectBase):
pass
cdef cppclass Array32cd(PlainObjectBase):
pass
cdef cppclass Array33cd(PlainObjectBase):
pass
cdef cppclass Array34cd(PlainObjectBase):
pass
cdef cppclass Array3Xcd(PlainObjectBase):
pass
cdef cppclass Array42cd(PlainObjectBase):
pass
cdef cppclass Array43cd(PlainObjectBase):
pass
cdef cppclass Array44cd(PlainObjectBase):
pass
cdef cppclass Array4Xcd(PlainObjectBase):
pass
cdef cppclass ArrayX2cd(PlainObjectBase):
pass
cdef cppclass ArrayX3cd(PlainObjectBase):
pass
cdef cppclass ArrayX4cd(PlainObjectBase):
pass
cdef cppclass ArrayXXcd(PlainObjectBase):
pass
cdef cppclass Array2cd(PlainObjectBase):
pass
cdef cppclass Array3cd(PlainObjectBase):
pass
cdef cppclass Array4cd(PlainObjectBase):
pass
cdef cppclass ArrayXcd(PlainObjectBase):
pass

View File

@ -1 +0,0 @@

View File

@ -1,504 +0,0 @@
#include <Eigen/Dense>
#include <iostream>
#include <stdexcept>
#include <complex>
typedef ::std::complex< double > __pyx_t_double_complex;
typedef ::std::complex< float > __pyx_t_float_complex;
#include "conversions_api.h"
#ifndef EIGENCY_CPP
#define EIGENCY_CPP
namespace eigency {
template<typename Scalar>
inline PyArrayObject *_ndarray_view(Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
template<typename Scalar>
inline PyArrayObject *_ndarray_copy(const Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
// Strides:
// Eigen and numpy differ in their way of dealing with strides. Eigen has the concept of outer and
// inner strides, which are dependent on whether the array/matrix is row-major of column-major:
// Inner stride: denotes the offset between succeeding elements in each row (row-major) or column (column-major).
// Outer stride: denotes the offset between succeeding rows (row-major) or succeeding columns (column-major).
// In contrast, numpy's stride is simply a measure of how fast each dimension should be incremented.
// Consequently, a switch in numpy storage order from row-major to column-major involves a switch
// in strides, while it does not affect the stride in Eigen.
template<>
inline PyArrayObject *_ndarray_view<double>(double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major) {
// Eigen row-major mode: row_stride=outer_stride, and col_stride=inner_stride
// If no stride is given, the row_stride is set to the number of columns.
return ndarray_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
} else {
// Eigen column-major mode: row_stride=outer_stride, and col_stride=inner_stride
// If no stride is given, the cow_stride is set to the number of rows.
return ndarray_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
}
template<>
inline PyArrayObject *_ndarray_copy<double>(const double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<float>(float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<float>(const float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<long>(long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<long>(const long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned long>(unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned long>(const unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<int>(int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<int>(const int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned int>(unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned int>(const unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<short>(short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<short>(const short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned short>(unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned short>(const unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<signed char>(signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<signed char>(const signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned char>(unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned char>(const unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<std::complex<double> >(std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<std::complex<double> >(const std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<std::complex<float> >(std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<std::complex<float> >(const std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template <typename Derived>
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
// If C++11 is available, check if m is an r-value reference, in
// which case a copy should always be made
#if __cplusplus >= 201103L
template <typename Derived>
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &&m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
#endif
template <typename Derived>
inline PyArrayObject *ndarray(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_view(Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_view(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_copy(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray(Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
// Since this is a map, we assume that ownership is correctly taken care
// of, and we avoid taking a copy
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_view(Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_view(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_copy(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename MatrixType,
int _MapOptions = Eigen::Unaligned,
typename _StrideType=Eigen::Stride<0,0> >
class MapBase: public Eigen::Map<MatrixType, _MapOptions, _StrideType> {
public:
typedef Eigen::Map<MatrixType, _MapOptions, _StrideType> Base;
typedef typename Base::Scalar Scalar;
MapBase(Scalar* data,
long rows,
long cols,
_StrideType stride=_StrideType())
: Base(data,
// If both dimensions are dynamic or dimensions match, accept dimensions as they are
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
? rows
// otherwise, test if swapping them makes them fit
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
? cols
: rows),
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
? cols
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
? rows
: cols),
stride
) {}
MapBase &operator=(const MatrixType &other) {
Base::operator=(other);
return *this;
}
virtual ~MapBase() { }
};
template <template<class,int,int,int,int,int> class EigencyDenseBase,
typename Scalar,
int _Rows, int _Cols,
int _Options = Eigen::AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
#if EIGEN_VERSION_AT_LEAST(3,2,90)
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
#else
: !(_Cols==1 && _Rows!=1) ? Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
#endif
: ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
#if EIGEN_VERSION_AT_LEAST(3,2,90)
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#else
: Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
#endif
int _MapOptions = Eigen::Unaligned,
int _StrideOuter=0, int _StrideInner=0,
int _MaxRows = _Rows,
int _MaxCols = _Cols>
class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > {
public:
typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
FlattenedMap()
: Base(NULL, 0, 0),
object_(NULL) {}
FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
: Base(data, rows, cols,
Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
object_(NULL) {
}
FlattenedMap(PyArrayObject *object)
: Base((Scalar *)((PyArrayObject*)object)->data,
// : Base(_from_numpy<Scalar>((PyArrayObject*)object),
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
_StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
}
FlattenedMap &operator=(const FlattenedMap &other) {
if (other.object_) {
new (this) FlattenedMap(other.object_);
} else {
// Replace the memory that we point to (not a memory allocation)
new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
other.rows(),
other.cols(),
other.outerStride(),
other.innerStride());
}
return *this;
}
operator Base() const {
return static_cast<Base>(*this);
}
operator Base&() const {
return static_cast<Base&>(*this);
}
operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
}
virtual ~FlattenedMap() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
};
template <typename MatrixType>
class Map: public MapBase<MatrixType> {
public:
typedef MapBase<MatrixType> Base;
typedef typename MatrixType::Scalar Scalar;
enum {
RowsAtCompileTime = Base::Base::RowsAtCompileTime,
ColsAtCompileTime = Base::Base::ColsAtCompileTime
};
Map()
: Base(NULL,
(RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
(ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
object_(NULL) {
}
Map(Scalar *data, long rows, long cols)
: Base(data, rows, cols),
object_(NULL) {}
Map(PyArrayObject *object)
: Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
// ROW: If array is in row-major order, transpose (see README)
(PyObject*)object == Py_None? 0 :
(!PyArray_IS_F_CONTIGUOUS(object)
? ((object->nd == 1)
? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector)
: object->dimensions[1])
: object->dimensions[0]),
// COLUMN: If array is in row-major order: transpose (see README)
(PyObject*)object == Py_None? 0 :
(!PyArray_IS_F_CONTIGUOUS(object)
? object->dimensions[0]
: ((object->nd == 1)
? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector)
: object->dimensions[1]))),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
}
Map &operator=(const Map &other) {
if (other.object_) {
new (this) Map(other.object_);
} else {
// Replace the memory that we point to (not a memory allocation)
new (this) Map(const_cast<Scalar*>(other.data()),
other.rows(),
other.cols());
}
return *this;
}
Map &operator=(const MatrixType &other) {
MapBase<MatrixType>::operator=(other);
return *this;
}
operator Base() const {
return static_cast<Base>(*this);
}
operator Base&() const {
return static_cast<Base&>(*this);
}
operator MatrixType() const {
return MatrixType(static_cast<Base>(*this));
}
virtual ~Map() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
};
}
#endif