added updateNoiseModels_givenCovs to BetweenFactorEM.
parent
fc58bf36fb
commit
89410fe1ee
|
@ -333,6 +333,7 @@ virtual class BetweenFactorEM : gtsam::NonlinearFactor {
|
||||||
bool get_flag_bump_up_near_zero_probs() const;
|
bool get_flag_bump_up_near_zero_probs() const;
|
||||||
|
|
||||||
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph);
|
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph);
|
||||||
|
void updateNoiseModels_givenCovs(const gtsam::Values& values, Matrix cov1, Matrix cov2, Matrix cov12);
|
||||||
Matrix get_model_inlier_cov();
|
Matrix get_model_inlier_cov();
|
||||||
Matrix get_model_outlier_cov();
|
Matrix get_model_outlier_cov();
|
||||||
|
|
||||||
|
|
|
@ -324,12 +324,6 @@ namespace gtsam {
|
||||||
* TODO: improve efficiency (info form)
|
* TODO: improve efficiency (info form)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
const T& p1 = values.at<T>(key1_);
|
|
||||||
const T& p2 = values.at<T>(key2_);
|
|
||||||
|
|
||||||
Matrix H1, H2;
|
|
||||||
T hx = p1.between(p2, H1, H2); // h(x)
|
|
||||||
|
|
||||||
// get joint covariance of the involved states
|
// get joint covariance of the involved states
|
||||||
std::vector<gtsam::Key> Keys;
|
std::vector<gtsam::Key> Keys;
|
||||||
Keys.push_back(key1_);
|
Keys.push_back(key1_);
|
||||||
|
@ -340,30 +334,50 @@ namespace gtsam {
|
||||||
Matrix cov2 = joint_marginal12(key2_, key2_);
|
Matrix cov2 = joint_marginal12(key2_, key2_);
|
||||||
Matrix cov12 = joint_marginal12(key1_, key2_);
|
Matrix cov12 = joint_marginal12(key1_, key2_);
|
||||||
|
|
||||||
Matrix H;
|
updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
|
||||||
H.resize(H1.rows(), H1.rows()+H2.rows());
|
|
||||||
H << H1, H2; // H = [H1 H2]
|
|
||||||
|
|
||||||
Matrix joint_cov;
|
|
||||||
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
|
||||||
joint_cov << cov1, cov12,
|
|
||||||
cov12.transpose(), cov2;
|
|
||||||
|
|
||||||
Matrix cov_state = H*joint_cov*H.transpose();
|
|
||||||
|
|
||||||
// model_inlier_->print("before:");
|
|
||||||
|
|
||||||
// update inlier and outlier noise models
|
|
||||||
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
|
||||||
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
|
||||||
|
|
||||||
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
|
||||||
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
|
||||||
|
|
||||||
// model_inlier_->print("after:");
|
|
||||||
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){
|
||||||
|
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
|
||||||
|
* (note these are given in the E step, where indicator probabilities are calculated).
|
||||||
|
*
|
||||||
|
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
|
||||||
|
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
|
||||||
|
*
|
||||||
|
* TODO: improve efficiency (info form)
|
||||||
|
*/
|
||||||
|
|
||||||
|
const T& p1 = values.at<T>(key1_);
|
||||||
|
const T& p2 = values.at<T>(key2_);
|
||||||
|
|
||||||
|
Matrix H1, H2;
|
||||||
|
T hx = p1.between(p2, H1, H2); // h(x)
|
||||||
|
|
||||||
|
Matrix H;
|
||||||
|
H.resize(H1.rows(), H1.rows()+H2.rows());
|
||||||
|
H << H1, H2; // H = [H1 H2]
|
||||||
|
|
||||||
|
Matrix joint_cov;
|
||||||
|
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
|
||||||
|
joint_cov << cov1, cov12,
|
||||||
|
cov12.transpose(), cov2;
|
||||||
|
|
||||||
|
Matrix cov_state = H*joint_cov*H.transpose();
|
||||||
|
|
||||||
|
// model_inlier_->print("before:");
|
||||||
|
|
||||||
|
// update inlier and outlier noise models
|
||||||
|
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
|
||||||
|
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
|
||||||
|
|
||||||
|
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
|
||||||
|
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
|
||||||
|
|
||||||
|
// model_inlier_->print("after:");
|
||||||
|
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/** return the measured */
|
/** return the measured */
|
||||||
const VALUE& measured() const {
|
const VALUE& measured() const {
|
||||||
|
|
Loading…
Reference in New Issue