Docs with o4-mini

release/4.3a0
Frank Dellaert 2025-04-26 12:30:55 -04:00
parent f63255be5b
commit 885ab38a7e
1 changed files with 54 additions and 59 deletions

View File

@ -11,19 +11,14 @@
/**
* @file LIEKF_NavstateExample.cpp
* @brief A left invariant Extended Kalman Filter example using the LIEKF
* on NavState using IMU/GPS measurements.
*
* This example uses the templated LIEKF class to estimate the state of
* an object using IMU/GPS measurements. The prediction stage of the LIEKF uses
* a generic dynamics function to predict the state. This simulates a navigation
* state of (pose, velocity, position)
*
* @date Apr 25, 2025
* @author Scott Baker
* @author Matt Kielo
* @author Frank Dellaert
* @brief Example of a Left-Invariant Extended Kalman Filter on NavState
* using IMU (predict) and GPS (update) measurements.
* @date April 25, 2025
* @authors Scott Baker, Matt Kielo, Frank Dellaert
*/
#include <gtsam/base/Matrix.h>
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/navigation/NavState.h>
#include <gtsam/nonlinear/LIEKF.h>
@ -32,85 +27,85 @@
using namespace std;
using namespace gtsam;
// Define a dynamics function.
// The dynamics function for NavState returns a result vector of
// size 9 of [angular_velocity, 0, 0, 0, linear_acceleration] as well as
// a Jacobian of the dynamics function with respect to the state X.
// Since this is a left invariant EKF, the error dynamics do not rely on the
// state
/**
* @brief Left-invariant dynamics for NavState.
* @param X Current state (unused for left-invariant error dynamics).
* @param imu 6×1 vector [a; ω]: linear accel (first 3) and angular vel (last
* 3).
* @param H Optional 9×9 Jacobian w.r.t. X (always zero here).
* @return 9×1 tangent: [ω; 0; a].
*/
Vector9 dynamics(const NavState& X, const Vector6& imu,
OptionalJacobian<9, 9> H = {}) {
const auto a = imu.head<3>();
const auto w = imu.tail<3>();
Vector9 result;
result << w, Z_3x1, a;
if (H) {
*H = Matrix::Zero(9, 9);
}
return result;
auto a = imu.head<3>();
auto w = imu.tail<3>();
Vector9 xi;
xi << w, Vector3::Zero(), a;
if (H) *H = Matrix9::Zero();
return xi;
}
// define a GPS measurement processor. The GPS measurement processor returns
// the expected measurement h(x) = translation of X with a Jacobian H used in
// the update stage of the LIEKF.
/**
* @brief GPS measurement model: returns position and its Jacobian.
* @param X Current state.
* @param H Optional 3×9 Jacobian w.r.t. X.
* @return 3×1 position vector.
*/
Vector3 h_gps(const NavState& X, OptionalJacobian<3, 9> H = {}) {
if (H) *H << Z_3x3, Z_3x3, X.R();
if (H) {
// H = [ 0₃×3, 0₃×3, R ]
*H << Z_3x3, Z_3x3, X.R();
}
return X.t();
}
int main() {
// Initialize the filter's state, covariance, and time interval values.
// Initial state, covariance, and time step
NavState X0;
Matrix9 P0 = Matrix9::Identity() * 0.1;
double dt = 1.0;
// Create the filter with the initial state, covariance, and dynamics and
// measurement functions.
// Create the filter with the initial state and covariance.
LIEKF<NavState> ekf(X0, P0);
// Create the process covariance and measurement covariance matrices Q and R.
// Process & measurement noise
Matrix9 Q = Matrix9::Identity() * 0.01;
Matrix3 R = Matrix3::Identity() * 0.5;
// Create the IMU measurements of the form (linear_acceleration,
// angular_velocity)
Vector6 imu1, imu2;
imu1 << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
imu2 << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
imu1 << 0.1, 0.0, 0.0, 0.0, 0.2, 0.0;
imu2 << 0.0, 0.3, 0.0, 0.4, 0.0, 0.0;
// Create the GPS measurements of the form (px, py, pz)
Vector3 z1, z2;
z1 << 0.0, 0.0, 0.0;
z2 << 0.0, 0.0, 0.0;
z1 << 0.3, 0.0, 0.0;
z2 << 0.6, 0.0, 0.0;
// Run the predict and update stages, and print their results.
cout << "\nInitialization:\n";
cout << "X0: " << ekf.state() << endl;
cout << "P0: " << ekf.covariance() << endl;
cout << "=== Initialization ===\n"
<< "X0: " << ekf.state() << "\n"
<< "P0: " << ekf.covariance() << "\n\n";
// First prediction stage
ekf.predict(dynamics, imu1, dt, Q);
cout << "\nFirst Prediction:\n";
cout << "X: " << ekf.state() << endl;
cout << "P: " << ekf.covariance() << endl;
cout << "--- After first predict ---\n"
<< "X: " << ekf.state() << "\n"
<< "P: " << ekf.covariance() << "\n\n";
// First update stage
ekf.update(h_gps, z1, R);
cout << "\nFirst Update:\n";
cout << "X: " << ekf.state() << endl;
cout << "P: " << ekf.covariance() << endl;
cout << "--- After first update ---\n"
<< "X: " << ekf.state() << "\n"
<< "P: " << ekf.covariance() << "\n\n";
// Second prediction stage
ekf.predict(dynamics, imu2, dt, Q);
cout << "\nSecond Prediction:\n";
cout << "X: " << ekf.state() << endl;
cout << "P: " << ekf.covariance() << endl;
cout << "--- After second predict ---\n"
<< "X: " << ekf.state() << "\n"
<< "P: " << ekf.covariance() << "\n\n";
// Second update stage
ekf.update(h_gps, z2, R);
cout << "\nSecond Update:\n";
cout << "X: " << ekf.state() << endl;
cout << "P: " << ekf.covariance() << endl;
cout << "--- After second update ---\n"
<< "X: " << ekf.state() << "\n"
<< "P: " << ekf.covariance() << "\n";
return 0;
}
}