Renamed to omega to remain consistent
parent
101129a9c7
commit
87e45fa306
|
@ -76,18 +76,18 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
|
|||
// Get trace(R)
|
||||
double tr = R.trace();
|
||||
|
||||
Vector3 thetaR;
|
||||
Vector3 omega;
|
||||
|
||||
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
|
||||
// we do something special
|
||||
if (std::abs(tr + 1.0) < 1e-10) {
|
||||
if (std::abs(R33 + 1.0) > 1e-10)
|
||||
thetaR = (M_PI / sqrt(2.0 + 2.0 * R33)) * Vector3(R13, R23, 1.0 + R33);
|
||||
omega = (M_PI / sqrt(2.0 + 2.0 * R33)) * Vector3(R13, R23, 1.0 + R33);
|
||||
else if (std::abs(R22 + 1.0) > 1e-10)
|
||||
thetaR = (M_PI / sqrt(2.0 + 2.0 * R22)) * Vector3(R12, 1.0 + R22, R32);
|
||||
omega = (M_PI / sqrt(2.0 + 2.0 * R22)) * Vector3(R12, 1.0 + R22, R32);
|
||||
else
|
||||
// if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit
|
||||
thetaR = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
|
||||
omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31);
|
||||
} else {
|
||||
double magnitude;
|
||||
double tr_3 = tr - 3.0; // always negative
|
||||
|
@ -99,11 +99,11 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
|
|||
// use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2)
|
||||
magnitude = 0.5 - tr_3 * tr_3 / 12.0;
|
||||
}
|
||||
thetaR = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12);
|
||||
omega = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12);
|
||||
}
|
||||
|
||||
if(H) *H = LogmapDerivative(thetaR);
|
||||
return thetaR;
|
||||
if(H) *H = LogmapDerivative(omega);
|
||||
return omega;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue