Show iterations and add extra points

release/4.3a0
Frank Dellaert 2024-10-29 09:34:33 -07:00
parent aa0db60a52
commit 874fb5919f
1 changed files with 29 additions and 10 deletions

View File

@ -45,7 +45,7 @@ def formatter(key):
return f"({edge.i()},{edge.j()})"
def simulate_geometry(num_cameras):
def simulate_geometry(num_cameras, rng, num_random_points=12):
"""simulate geometry (points and poses)"""
# Define the camera calibration parameters
cal = Cal3f(50.0, 50.0, 50.0)
@ -53,6 +53,10 @@ def simulate_geometry(num_cameras):
# Create the set of 8 ground-truth landmarks
points = SFMdata.createPoints()
# Create extra random points in the -10,10 cube around the origin
extra_points = rng.uniform(-10, 10, (num_random_points, 3))
points.extend([gtsam.Point3(p) for p in extra_points])
# Create the set of ground-truth poses
poses = SFMdata.posesOnCircle(num_cameras, 30)
@ -173,9 +177,8 @@ def optimize(graph, initialEstimate, method):
params.setVerbosityLM("SUMMARY")
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, params)
result = optimizer.optimize()
# if method == "EssentialMatrix":
# result.print("Final results:\n", formatter)
return result
iterations = optimizer.iterations()
return result, iterations
def compute_distances(method, result, ground_truth, num_cameras, cal):
@ -231,6 +234,7 @@ def plot_results(results):
methods = list(results.keys())
final_errors = [results[method]["final_error"] for method in methods]
distances = [results[method]["distances"] for method in methods]
iterations = [results[method]["iterations"] for method in methods]
fig, ax1 = plt.subplots()
@ -243,10 +247,21 @@ def plot_results(results):
ax2 = ax1.twinx()
color = "tab:blue"
ax2.set_ylabel("Mean Geodesic Distance", color=color)
ax2.plot(methods, distances, color=color, marker="o")
ax2.plot(methods, distances, color=color, marker="o", linestyle="-")
ax2.tick_params(axis="y", labelcolor=color)
plt.title("Comparison of Methods")
# Annotate the blue data points with the average number of iterations
for i, method in enumerate(methods):
ax2.annotate(
f"{iterations[i]:.1f}",
(i, distances[i]),
textcoords="offset points",
xytext=(20, -5),
ha="center",
color=color,
)
plt.title("Comparison of Methods (Labels show avg iterations)")
fig.tight_layout()
plt.show()
@ -256,6 +271,7 @@ def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description="Compare Fundamental and Essential Matrix Methods")
parser.add_argument("--num_cameras", type=int, default=4, help="Number of cameras (default: 4)")
parser.add_argument("--num_extra_points", type=int, default=12, help="Number of extra random points (default: 12)")
parser.add_argument("--nr_trials", type=int, default=5, help="Number of trials (default: 5)")
parser.add_argument("--seed", type=int, default=42, help="Random seed (default: 42)")
parser.add_argument("--noise_std", type=float, default=0.5, help="Standard deviation of noise (default: 0.5)")
@ -265,10 +281,10 @@ def main():
rng = np.random.default_rng(seed=args.seed)
# Initialize results dictionary
results = {method: {"distances": [], "final_error": []} for method in methods}
results = {method: {"distances": [], "final_error": [], "iterations": []} for method in methods}
# Simulate geometry
points, poses, cal = simulate_geometry(args.num_cameras)
points, poses, cal = simulate_geometry(args.num_cameras, rng, args.num_extra_points)
# Compute ground truth matrices
ground_truth = {method: compute_ground_truth(method, poses, cal) for method in methods}
@ -298,7 +314,7 @@ def main():
assert np.allclose(error0, current_error), "Initial errors do not match among methods."
# Optimize the graph
result = optimize(graph, initial_estimate[method], method)
result, iterations = optimize(graph, initial_estimate[method], method)
# Compute distances from ground truth
distances = compute_distances(method, result, ground_truth[method], args.num_cameras, cal)
@ -309,15 +325,18 @@ def main():
# Store results
results[method]["distances"].extend(distances)
results[method]["final_error"].append(final_error)
results[method]["iterations"].append(iterations)
print(f"Method: {method}")
print(f"Final Error: {final_error:.3f}")
print(f"Mean Geodesic Distance: {np.mean(distances):.3f}\n")
print(f"Mean Geodesic Distance: {np.mean(distances):.3f}")
print(f"Number of Iterations: {iterations}\n")
# Average results over trials
for method in methods:
results[method]["final_error"] = np.mean(results[method]["final_error"])
results[method]["distances"] = np.mean(results[method]["distances"])
results[method]["iterations"] = np.mean(results[method]["iterations"])
# Plot results
plot_results(results)