Fixed broken timing script and fixed logic for building/excluding examples and timing scripts
parent
946cc5338a
commit
873283c522
|
@ -363,7 +363,7 @@ message(STATUS "================ Configuration Options ======================"
|
|||
message(STATUS "Build flags ")
|
||||
print_config_flag(${GTSAM_BUILD_TESTS} "Build Tests ")
|
||||
print_config_flag(${GTSAM_BUILD_EXAMPLES_ALWAYS} "Build examples with 'make all' ")
|
||||
print_config_flag(${GTSAM_BUILD_TIMING} "Build Timing scripts ")
|
||||
print_config_flag(${GTSAM_BUILD_TIMING_ALWAYS} "Build timing scripts with 'make all'")
|
||||
if (DOXYGEN_FOUND)
|
||||
print_config_flag(${GTSAM_BUILD_DOCS} "Build Docs ")
|
||||
endif()
|
||||
|
|
|
@ -52,7 +52,7 @@ endmacro()
|
|||
# an empty string "" if nothing needs to be excluded.
|
||||
# linkLibraries: The list of libraries to link to.
|
||||
macro(gtsamAddExamplesGlob globPatterns excludedFiles linkLibraries)
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "examples" "${GTSAM_BUILD_EXAMPLES_ALWAYS}")
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "examples" ${GTSAM_BUILD_EXAMPLES_ALWAYS})
|
||||
endmacro()
|
||||
|
||||
|
||||
|
@ -77,7 +77,7 @@ endmacro()
|
|||
# an empty string "" if nothing needs to be excluded.
|
||||
# linkLibraries: The list of libraries to link to.
|
||||
macro(gtsamAddTimingGlob globPatterns excludedFiles linkLibraries)
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "timing" "FALSE")
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "timing" ${GTSAM_BUILD_TIMING_ALWAYS})
|
||||
endmacro()
|
||||
|
||||
|
||||
|
@ -88,7 +88,7 @@ enable_testing()
|
|||
|
||||
option(GTSAM_BUILD_TESTS "Enable/Disable building of tests" ON)
|
||||
option(GTSAM_BUILD_EXAMPLES_ALWAYS "Build examples with 'make all' (build with 'make examples' if not)" ON)
|
||||
option(GTSAM_BUILD_TIMING "Enable/Disable building of timing scripts" OFF) # These do not currently work
|
||||
option(GTSAM_BUILD_TIMING_ALWAYS "Build timing scripts with 'make all' (build with 'make timing' if not" OFF)
|
||||
|
||||
# Add option for combining unit tests
|
||||
if(MSVC OR XCODE_VERSION)
|
||||
|
@ -107,9 +107,7 @@ endif()
|
|||
add_custom_target(examples)
|
||||
|
||||
# Add timing target
|
||||
if(GTSAM_BUILD_TIMING)
|
||||
add_custom_target(timing)
|
||||
endif()
|
||||
add_custom_target(timing)
|
||||
|
||||
# Include obsolete macros - will be removed in the near future
|
||||
include(GtsamTestingObsolete)
|
||||
|
@ -258,10 +256,12 @@ macro(gtsamAddExesGlob_impl globPatterns excludedFiles linkLibraries groupName b
|
|||
|
||||
# Add TOPSRCDIR
|
||||
set_property(SOURCE ${script_src} APPEND PROPERTY COMPILE_DEFINITIONS "TOPSRCDIR=\"${PROJECT_SOURCE_DIR}\"")
|
||||
|
||||
if(NOT buildWithAll)
|
||||
|
||||
# Exclude from all or not - note weird variable assignment because we're in a macro
|
||||
set(buildWithAll_on ${buildWithAll})
|
||||
if(NOT buildWithAll_on)
|
||||
# Exclude from 'make all' and 'make install'
|
||||
set_target_properties(${target_name} PROPERTIES EXCLUDE_FROM_ALL ON)
|
||||
set_target_properties("${script_name}" PROPERTIES EXCLUDE_FROM_ALL ON)
|
||||
endif()
|
||||
|
||||
# Configure target folder (for MSVC and Xcode)
|
||||
|
|
|
@ -1,6 +1,3 @@
|
|||
list(APPEND to_exclude
|
||||
timeFactorOverhead.cpp
|
||||
timeSLAMlike.cpp)
|
||||
gtsamAddTimingGlob("*.cpp" "${to_exclude}" "gtsam")
|
||||
gtsamAddTimingGlob("*.cpp" "" "gtsam")
|
||||
|
||||
target_link_libraries(timeGaussianFactorGraph CppUnitLite)
|
||||
|
|
|
@ -16,30 +16,29 @@
|
|||
* @date Aug 20, 2010
|
||||
*/
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/inference/EliminationTree-inl.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <boost/random.hpp>
|
||||
#include <boost/timer.hpp>
|
||||
#include <vector>
|
||||
|
||||
using namespace gtsam;
|
||||
using namespace std;
|
||||
|
||||
typedef EliminationTree<GaussianFactor> GaussianEliminationTree;
|
||||
|
||||
static boost::variate_generator<boost::mt19937, boost::uniform_real<> > rg(boost::mt19937(), boost::uniform_real<>(0.0, 1.0));
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
Index key = 0;
|
||||
Key key = 0;
|
||||
|
||||
size_t vardim = 2;
|
||||
size_t blockdim = 1;
|
||||
size_t nBlocks = 2000;
|
||||
size_t nBlocks = 4000;
|
||||
|
||||
size_t nTrials = 10;
|
||||
size_t nTrials = 20;
|
||||
|
||||
double blockbuild, blocksolve, combbuild, combsolve;
|
||||
|
||||
|
@ -54,8 +53,7 @@ int main(int argc, char *argv[]) {
|
|||
// Build GFG's
|
||||
cout << "Building blockwise Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
boost::timer timer;
|
||||
timer.restart();
|
||||
gttic_(blockbuild);
|
||||
vector<GaussianFactorGraph> blockGfgs;
|
||||
blockGfgs.reserve(nTrials);
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
|
@ -70,22 +68,26 @@ int main(int argc, char *argv[]) {
|
|||
Vector b(blockdim);
|
||||
for(size_t j=0; j<blockdim; ++j)
|
||||
b(j) = rg();
|
||||
blockGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(key, A, b, noise)));
|
||||
blockGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, A, b, noise));
|
||||
}
|
||||
}
|
||||
blockbuild = timer.elapsed();
|
||||
gttoc_(blockbuild);
|
||||
tictoc_getNode(blockbuildNode, blockbuild);
|
||||
blockbuild = blockbuildNode->secs();
|
||||
cout << blockbuild << " s" << endl;
|
||||
|
||||
// Solve GFG's
|
||||
cout << "Solving blockwise Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
timer.restart();
|
||||
gttic_(blocksolve);
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
// cout << "Trial " << trial << endl;
|
||||
GaussianBayesNet::shared_ptr gbn(GaussianEliminationTree::Create(blockGfgs[trial])->eliminate(&EliminateQR));
|
||||
VectorValues soln(optimize(*gbn));
|
||||
GaussianBayesNet::shared_ptr gbn = blockGfgs[trial].eliminateSequential();
|
||||
VectorValues soln = gbn->optimize();
|
||||
}
|
||||
blocksolve = timer.elapsed();
|
||||
gttoc_(blocksolve);
|
||||
tictoc_getNode(blocksolveNode, blocksolve);
|
||||
blocksolve = blocksolveNode->secs();
|
||||
cout << blocksolve << " s" << endl;
|
||||
}
|
||||
|
||||
|
@ -97,8 +99,7 @@ int main(int argc, char *argv[]) {
|
|||
// Build GFG's
|
||||
cout << "Building combined-factor Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
boost::timer timer;
|
||||
timer.restart();
|
||||
gttic_(combbuild);
|
||||
vector<GaussianFactorGraph> combGfgs;
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
combGfgs.push_back(GaussianFactorGraph());
|
||||
|
@ -115,21 +116,25 @@ int main(int argc, char *argv[]) {
|
|||
for(size_t j=0; j<blockdim; ++j)
|
||||
bcomb(blockdim*i+j) = rg();
|
||||
}
|
||||
combGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(key, Acomb, bcomb,
|
||||
noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0))));
|
||||
combGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, Acomb, bcomb,
|
||||
noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0)));
|
||||
}
|
||||
combbuild = timer.elapsed();
|
||||
gttoc(combbuild);
|
||||
tictoc_getNode(combbuildNode, combbuild);
|
||||
combbuild = combbuildNode->secs();
|
||||
cout << combbuild << " s" << endl;
|
||||
|
||||
// Solve GFG's
|
||||
cout << "Solving combined-factor Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
timer.restart();
|
||||
gttic_(combsolve);
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
GaussianBayesNet::shared_ptr gbn(GaussianEliminationTree::Create(combGfgs[trial])->eliminate(&EliminateQR));
|
||||
VectorValues soln(optimize(*gbn));
|
||||
GaussianBayesNet::shared_ptr gbn = combGfgs[trial].eliminateSequential();
|
||||
VectorValues soln = gbn->optimize();
|
||||
}
|
||||
combsolve = timer.elapsed();
|
||||
gttoc_(combsolve);
|
||||
tictoc_getNode(combsolveNode, combsolve);
|
||||
combsolve = combsolveNode->secs();
|
||||
cout << combsolve << " s" << endl;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,144 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file timeSLAMlike.cpp
|
||||
* @brief Times solving of random SLAM-like graphs
|
||||
* @author Richard Roberts
|
||||
* @date Aug 30, 2010
|
||||
*/
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
||||
#include <boost/random.hpp>
|
||||
#include <boost/timer.hpp>
|
||||
#include <boost/bind.hpp>
|
||||
#include <boost/lambda/lambda.hpp>
|
||||
#include <vector>
|
||||
|
||||
using namespace gtsam;
|
||||
using namespace std;
|
||||
using namespace boost::lambda;
|
||||
|
||||
typedef EliminationTree<JacobianFactor> GaussianEliminationTree;
|
||||
|
||||
static boost::variate_generator<boost::mt19937, boost::uniform_real<> > rg(boost::mt19937(), boost::uniform_real<>(0.0, 1.0));
|
||||
|
||||
bool _pair_compare(const pair<Index, Matrix>& a1, const pair<Index, Matrix>& a2) { return a1.first < a2.first; }
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
|
||||
size_t vardim = 3;
|
||||
size_t blockdim = 3;
|
||||
int nVars = 500;
|
||||
size_t blocksPerVar = 5;
|
||||
size_t varsPerBlock = 2;
|
||||
size_t varSpread = 10;
|
||||
|
||||
size_t nTrials = 10;
|
||||
|
||||
double blockbuild, blocksolve;
|
||||
|
||||
cout << "\n" << nVars << " variables of dimension " << vardim << ", " <<
|
||||
blocksPerVar << " blocks for each variable, blocks of dimension " << blockdim << " measure " << varsPerBlock << " variables\n";
|
||||
cout << nTrials << " trials\n";
|
||||
|
||||
boost::variate_generator<boost::mt19937, boost::uniform_int<> > ri(boost::mt19937(), boost::uniform_int<>(-varSpread, varSpread));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Timing test with blockwise Gaussian factor graphs
|
||||
|
||||
{
|
||||
// Build GFG's
|
||||
cout << "Building SLAM-like Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
boost::timer timer;
|
||||
timer.restart();
|
||||
vector<GaussianFactorGraph> blockGfgs;
|
||||
blockGfgs.reserve(nTrials);
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
blockGfgs.push_back(GaussianFactorGraph());
|
||||
SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
|
||||
for(int c=0; c<nVars; ++c) {
|
||||
for(size_t d=0; d<blocksPerVar; ++d) {
|
||||
vector<pair<Index, Matrix> > terms; terms.reserve(varsPerBlock);
|
||||
if(c == 0 && d == 0)
|
||||
// If it's the first factor, just make a prior
|
||||
terms.push_back(make_pair(0, eye(vardim)));
|
||||
else if(c != 0) {
|
||||
// Generate a random Gaussian factor
|
||||
for(size_t h=0; h<varsPerBlock; ++h) {
|
||||
int var;
|
||||
// If it's the first factor for this variable, make it "odometry"
|
||||
if(d == 0 && h == 0)
|
||||
var = c-1;
|
||||
else if(d == 0 && h == 1)
|
||||
var = c;
|
||||
else
|
||||
// Choose random variable ids
|
||||
do
|
||||
var = c + ri();
|
||||
while(var < 0 || var > nVars-1 || find_if(terms.begin(), terms.end(),
|
||||
boost::bind(&pair<Index, Matrix>::first, boost::lambda::_1) == Index(var)) != terms.end());
|
||||
Matrix A(blockdim, vardim);
|
||||
for(size_t j=0; j<blockdim; ++j)
|
||||
for(size_t k=0; k<vardim; ++k)
|
||||
A(j,k) = rg();
|
||||
terms.push_back(make_pair(Index(var), A));
|
||||
}
|
||||
}
|
||||
Vector b(blockdim);
|
||||
sort(terms.begin(), terms.end(), &_pair_compare);
|
||||
for(size_t j=0; j<blockdim; ++j)
|
||||
b(j) = rg();
|
||||
if(!terms.empty())
|
||||
blockGfgs[trial].push_back(JacobianFactor::shared_ptr(new JacobianFactor(terms, b, noise)));
|
||||
}
|
||||
}
|
||||
|
||||
// if(trial == 0)
|
||||
// blockGfgs.front().print("GFG: ");
|
||||
}
|
||||
blockbuild = timer.elapsed();
|
||||
cout << blockbuild << " s" << endl;
|
||||
|
||||
// Solve GFG's
|
||||
cout << "Solving SLAM-like Gaussian factor graphs... ";
|
||||
cout.flush();
|
||||
timer.restart();
|
||||
for(size_t trial=0; trial<nTrials; ++trial) {
|
||||
// cout << "Trial " << trial << endl;
|
||||
VectorValues soln(*GaussianMultifrontalSolver(blockGfgs[trial]).optimize());
|
||||
}
|
||||
blocksolve = timer.elapsed();
|
||||
cout << blocksolve << " s" << endl;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Print per-graph times
|
||||
cout << "\nPer-factor-graph times for building and solving\n";
|
||||
cout << " total " << (1000.0*(blockbuild+blocksolve)/double(nTrials)) <<
|
||||
" build " << (1000.0*blockbuild/double(nTrials)) <<
|
||||
" solve " << (1000.0*blocksolve/double(nTrials)) << " ms/graph\n";
|
||||
cout << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @file timeSLAMlike.cpp
|
||||
* @brief
|
||||
* @author Richard Roberts
|
||||
* @date Aug 30, 2010
|
||||
*/
|
||||
|
Loading…
Reference in New Issue