new iterative.h/cpp compilation unit

release/4.3a0
Frank Dellaert 2009-12-28 09:56:58 +00:00
parent d9fd502656
commit 863ee58c0f
4 changed files with 147 additions and 92 deletions

View File

@ -101,7 +101,7 @@ testBinaryBayesNet_LDADD = libgtsam.la
# Gaussian inference
headers += GaussianFactorSet.h
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp iterative.cpp
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
testVectorConfig_SOURCES = testVectorConfig.cpp
testVectorConfig_LDADD = libgtsam.la

109
cpp/iterative.cpp Normal file
View File

@ -0,0 +1,109 @@
/*
* iterative.cpp
* @brief Iterative methods, implementation
* @author Frank Dellaert
* Created on: Dec 28, 2009
*/
#include "GaussianFactorGraph.h"
#include "iterative.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
/**
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
*/
Vector gradient(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
const Vector& b = Ab.second;
return A ^ (A * x - b);
}
/**
* Apply operator A
*/
Vector operator*(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A * x;
}
/**
* Apply operator A^T
*/
Vector operator^(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A ^ x;
}
/* ************************************************************************* */
// Method of conjugate gradients (CG) template
// "System" class S needs gradient(S,v), e=S*v, v=S^e
// "Vector" class V needs dot(v,v), -v, v+v, s*v
// "Vector" class E needs dot(v,v)
template<class S, class V, class E>
V CGD(const S& Ab, V x, double threshold = 1e-9) {
// Start with g0 = A'*(A*x0-b), d0 = - g0
// i.e., first step is in direction of negative gradient
V g = gradient(Ab, x);
V d = -g;
double prev_dotg = dot(g, g);
// loop max n times
size_t n = x.size();
for (int k = 1; k <= n; k++) {
// calculate optimal step-size
E Ad = Ab * d;
double alpha = -dot(d, g) / dot(Ad, Ad);
// do step in new search direction
x = x + alpha * d;
if (k == n) break;
// update gradient
g = g + alpha * (Ab ^ Ad);
// check for convergence
double dotg = dot(g, g);
if (dotg < threshold) break;
// calculate new search direction
double beta = dotg / prev_dotg;
prev_dotg = dotg;
d = -g + beta * d;
}
return x;
}
/* ************************************************************************* */
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
double threshold) {
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
const Vector& x, double threshold) {
System Ab = make_pair(A, b);
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
VectorConfig gradient(const GaussianFactorGraph& fg, const VectorConfig& x) {
return fg.gradient(x);
}
/* ************************************************************************* */
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
const VectorConfig& x, double threshold) {
return CGD<GaussianFactorGraph, VectorConfig, Errors> (fg, x);
}
/* ************************************************************************* */
} // namespace gtsam

34
cpp/iterative.h Normal file
View File

@ -0,0 +1,34 @@
/*
* iterative.h
* @brief Iterative methods, implementation
* @author Frank Dellaert
* Created on: Dec 28, 2009
*/
#include "Matrix.h"
namespace gtsam {
class GaussianFactorGraph;
class VectorConfig;
typedef std::pair<Matrix, Vector> System;
/**
* Method of conjugate gradients (CG), System version
*/
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
double threshold = 1e-9);
/**
* Method of conjugate gradients (CG), Matrix version
*/
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
const Vector& x, double threshold = 1e-9);
/**
* Method of conjugate gradients (CG), Gaussian Factor Graph version
* */
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
const VectorConfig& x, double threshold = 1e-9);
} // namespace gtsam

View File

@ -10,102 +10,14 @@ using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Ordering.h"
#include "iterative.h"
#include "smallExample.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
return Ab.gradient(x);
}
/* ************************************************************************* */
typedef pair<Matrix,Vector> System;
/**
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
*/
Vector gradient(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
const Vector& b = Ab.second;
return A ^ (A * x - b);
}
/**
* Apply operator A
*/
Vector operator*(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A * x;
}
/**
* Apply operator A^T
*/
Vector operator^(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A ^ x;
}
/* ************************************************************************* */
// Method of conjugate gradients (CG)
// "System" class S needs gradient(S,v), e=S*v, v=S^e
// "Vector" class V needs dot(v,v), -v, v+v, s*v
// "Vector" class E needs dot(v,v)
template <class S, class V, class E>
V CGD(const S& Ab, V x, double threshold = 1e-9) {
// Start with g0 = A'*(A*x0-b), d0 = - g0
// i.e., first step is in direction of negative gradient
V g = gradient(Ab, x);
V d = -g;
double prev_dotg = dot(g, g);
// loop max n times
size_t n = x.size();
for (int k = 1; k <= n; k++) {
// calculate optimal step-size
E Ad = Ab * d;
double alpha = -dot(d, g) / dot(Ad, Ad);
// do step in new search direction
x = x + alpha * d;
if (k == n) break;
// update gradient
g = g + alpha * (Ab ^ Ad);
// check for convergence
double dotg = dot(g, g);
if (dotg < threshold) break;
// calculate new search direction
double beta = dotg / prev_dotg;
prev_dotg = dotg;
d = -g + beta * d;
}
return x;
}
/* ************************************************************************* */
// Method of conjugate gradients (CG), Matrix version
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
const Vector& x, double threshold = 1e-9) {
System Ab = make_pair(A, b);
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
// Method of conjugate gradients (CG), Gaussian Factor Graph version
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
const VectorConfig& x, double threshold = 1e-9) {
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, gradientDescent )
TEST( Iterative, gradientDescent )
{
// Expected solution
Ordering ord;
@ -136,7 +48,7 @@ TEST( GaussianFactorGraph, gradientDescent )
// Do conjugate gradient descent, System version
System Ab = make_pair(A,b);
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
Vector actualX2 = conjugateGradientDescent(Ab,x0);
CHECK(assert_equal(expectedX,actualX2,1e-9));
}