new iterative.h/cpp compilation unit
parent
d9fd502656
commit
863ee58c0f
|
@ -101,7 +101,7 @@ testBinaryBayesNet_LDADD = libgtsam.la
|
||||||
|
|
||||||
# Gaussian inference
|
# Gaussian inference
|
||||||
headers += GaussianFactorSet.h
|
headers += GaussianFactorSet.h
|
||||||
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
|
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp iterative.cpp
|
||||||
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
|
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
|
||||||
testVectorConfig_SOURCES = testVectorConfig.cpp
|
testVectorConfig_SOURCES = testVectorConfig.cpp
|
||||||
testVectorConfig_LDADD = libgtsam.la
|
testVectorConfig_LDADD = libgtsam.la
|
||||||
|
|
|
@ -0,0 +1,109 @@
|
||||||
|
/*
|
||||||
|
* iterative.cpp
|
||||||
|
* @brief Iterative methods, implementation
|
||||||
|
* @author Frank Dellaert
|
||||||
|
* Created on: Dec 28, 2009
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "GaussianFactorGraph.h"
|
||||||
|
#include "iterative.h"
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
||||||
|
*/
|
||||||
|
Vector gradient(const System& Ab, const Vector& x) {
|
||||||
|
const Matrix& A = Ab.first;
|
||||||
|
const Vector& b = Ab.second;
|
||||||
|
return A ^ (A * x - b);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Apply operator A
|
||||||
|
*/
|
||||||
|
Vector operator*(const System& Ab, const Vector& x) {
|
||||||
|
const Matrix& A = Ab.first;
|
||||||
|
return A * x;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Apply operator A^T
|
||||||
|
*/
|
||||||
|
Vector operator^(const System& Ab, const Vector& x) {
|
||||||
|
const Matrix& A = Ab.first;
|
||||||
|
return A ^ x;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
// Method of conjugate gradients (CG) template
|
||||||
|
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
||||||
|
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
||||||
|
// "Vector" class E needs dot(v,v)
|
||||||
|
template<class S, class V, class E>
|
||||||
|
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
||||||
|
|
||||||
|
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||||
|
// i.e., first step is in direction of negative gradient
|
||||||
|
V g = gradient(Ab, x);
|
||||||
|
V d = -g;
|
||||||
|
double prev_dotg = dot(g, g);
|
||||||
|
|
||||||
|
// loop max n times
|
||||||
|
size_t n = x.size();
|
||||||
|
for (int k = 1; k <= n; k++) {
|
||||||
|
|
||||||
|
// calculate optimal step-size
|
||||||
|
E Ad = Ab * d;
|
||||||
|
double alpha = -dot(d, g) / dot(Ad, Ad);
|
||||||
|
|
||||||
|
// do step in new search direction
|
||||||
|
x = x + alpha * d;
|
||||||
|
if (k == n) break;
|
||||||
|
|
||||||
|
// update gradient
|
||||||
|
g = g + alpha * (Ab ^ Ad);
|
||||||
|
|
||||||
|
// check for convergence
|
||||||
|
double dotg = dot(g, g);
|
||||||
|
if (dotg < threshold) break;
|
||||||
|
|
||||||
|
// calculate new search direction
|
||||||
|
double beta = dotg / prev_dotg;
|
||||||
|
prev_dotg = dotg;
|
||||||
|
d = -g + beta * d;
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
|
||||||
|
double threshold) {
|
||||||
|
return CGD<System, Vector, Vector> (Ab, x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||||
|
const Vector& x, double threshold) {
|
||||||
|
System Ab = make_pair(A, b);
|
||||||
|
return CGD<System, Vector, Vector> (Ab, x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
VectorConfig gradient(const GaussianFactorGraph& fg, const VectorConfig& x) {
|
||||||
|
return fg.gradient(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
|
||||||
|
const VectorConfig& x, double threshold) {
|
||||||
|
return CGD<GaussianFactorGraph, VectorConfig, Errors> (fg, x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
||||||
|
} // namespace gtsam
|
|
@ -0,0 +1,34 @@
|
||||||
|
/*
|
||||||
|
* iterative.h
|
||||||
|
* @brief Iterative methods, implementation
|
||||||
|
* @author Frank Dellaert
|
||||||
|
* Created on: Dec 28, 2009
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Matrix.h"
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
class GaussianFactorGraph;
|
||||||
|
class VectorConfig;
|
||||||
|
|
||||||
|
typedef std::pair<Matrix, Vector> System;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Method of conjugate gradients (CG), System version
|
||||||
|
*/
|
||||||
|
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
|
||||||
|
double threshold = 1e-9);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Method of conjugate gradients (CG), Matrix version
|
||||||
|
*/
|
||||||
|
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||||
|
const Vector& x, double threshold = 1e-9);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Method of conjugate gradients (CG), Gaussian Factor Graph version
|
||||||
|
* */
|
||||||
|
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
|
||||||
|
const VectorConfig& x, double threshold = 1e-9);
|
||||||
|
|
||||||
|
} // namespace gtsam
|
|
@ -10,102 +10,14 @@ using namespace boost::assign;
|
||||||
#include <CppUnitLite/TestHarness.h>
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
#include "Ordering.h"
|
#include "Ordering.h"
|
||||||
|
#include "iterative.h"
|
||||||
#include "smallExample.h"
|
#include "smallExample.h"
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
|
TEST( Iterative, gradientDescent )
|
||||||
return Ab.gradient(x);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
typedef pair<Matrix,Vector> System;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
|
||||||
*/
|
|
||||||
Vector gradient(const System& Ab, const Vector& x) {
|
|
||||||
const Matrix& A = Ab.first;
|
|
||||||
const Vector& b = Ab.second;
|
|
||||||
return A ^ (A * x - b);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Apply operator A
|
|
||||||
*/
|
|
||||||
Vector operator*(const System& Ab, const Vector& x) {
|
|
||||||
const Matrix& A = Ab.first;
|
|
||||||
return A * x;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Apply operator A^T
|
|
||||||
*/
|
|
||||||
Vector operator^(const System& Ab, const Vector& x) {
|
|
||||||
const Matrix& A = Ab.first;
|
|
||||||
return A ^ x;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
// Method of conjugate gradients (CG)
|
|
||||||
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
|
||||||
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
|
||||||
// "Vector" class E needs dot(v,v)
|
|
||||||
template <class S, class V, class E>
|
|
||||||
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
|
||||||
|
|
||||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
|
||||||
// i.e., first step is in direction of negative gradient
|
|
||||||
V g = gradient(Ab, x);
|
|
||||||
V d = -g;
|
|
||||||
double prev_dotg = dot(g, g);
|
|
||||||
|
|
||||||
// loop max n times
|
|
||||||
size_t n = x.size();
|
|
||||||
for (int k = 1; k <= n; k++) {
|
|
||||||
|
|
||||||
// calculate optimal step-size
|
|
||||||
E Ad = Ab * d;
|
|
||||||
double alpha = -dot(d, g) / dot(Ad, Ad);
|
|
||||||
|
|
||||||
// do step in new search direction
|
|
||||||
x = x + alpha * d;
|
|
||||||
if (k == n) break;
|
|
||||||
|
|
||||||
// update gradient
|
|
||||||
g = g + alpha * (Ab ^ Ad);
|
|
||||||
|
|
||||||
// check for convergence
|
|
||||||
double dotg = dot(g, g);
|
|
||||||
if (dotg < threshold) break;
|
|
||||||
|
|
||||||
// calculate new search direction
|
|
||||||
double beta = dotg / prev_dotg;
|
|
||||||
prev_dotg = dotg;
|
|
||||||
d = -g + beta * d;
|
|
||||||
}
|
|
||||||
return x;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
// Method of conjugate gradients (CG), Matrix version
|
|
||||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
|
||||||
const Vector& x, double threshold = 1e-9) {
|
|
||||||
System Ab = make_pair(A, b);
|
|
||||||
return CGD<System, Vector, Vector> (Ab, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
// Method of conjugate gradients (CG), Gaussian Factor Graph version
|
|
||||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
|
|
||||||
const VectorConfig& x, double threshold = 1e-9) {
|
|
||||||
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
TEST( GaussianFactorGraph, gradientDescent )
|
|
||||||
{
|
{
|
||||||
// Expected solution
|
// Expected solution
|
||||||
Ordering ord;
|
Ordering ord;
|
||||||
|
@ -136,7 +48,7 @@ TEST( GaussianFactorGraph, gradientDescent )
|
||||||
|
|
||||||
// Do conjugate gradient descent, System version
|
// Do conjugate gradient descent, System version
|
||||||
System Ab = make_pair(A,b);
|
System Ab = make_pair(A,b);
|
||||||
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
|
Vector actualX2 = conjugateGradientDescent(Ab,x0);
|
||||||
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue