new iterative.h/cpp compilation unit
parent
d9fd502656
commit
863ee58c0f
|
@ -101,7 +101,7 @@ testBinaryBayesNet_LDADD = libgtsam.la
|
|||
|
||||
# Gaussian inference
|
||||
headers += GaussianFactorSet.h
|
||||
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
|
||||
sources += Errors.cpp VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp iterative.cpp
|
||||
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet testIterative
|
||||
testVectorConfig_SOURCES = testVectorConfig.cpp
|
||||
testVectorConfig_LDADD = libgtsam.la
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
/*
|
||||
* iterative.cpp
|
||||
* @brief Iterative methods, implementation
|
||||
* @author Frank Dellaert
|
||||
* Created on: Dec 28, 2009
|
||||
*/
|
||||
|
||||
#include "GaussianFactorGraph.h"
|
||||
#include "iterative.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
/**
|
||||
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
||||
*/
|
||||
Vector gradient(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
const Vector& b = Ab.second;
|
||||
return A ^ (A * x - b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A
|
||||
*/
|
||||
Vector operator*(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A * x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A^T
|
||||
*/
|
||||
Vector operator^(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A ^ x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG) template
|
||||
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
||||
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
||||
// "Vector" class E needs dot(v,v)
|
||||
template<class S, class V, class E>
|
||||
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
||||
|
||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||
// i.e., first step is in direction of negative gradient
|
||||
V g = gradient(Ab, x);
|
||||
V d = -g;
|
||||
double prev_dotg = dot(g, g);
|
||||
|
||||
// loop max n times
|
||||
size_t n = x.size();
|
||||
for (int k = 1; k <= n; k++) {
|
||||
|
||||
// calculate optimal step-size
|
||||
E Ad = Ab * d;
|
||||
double alpha = -dot(d, g) / dot(Ad, Ad);
|
||||
|
||||
// do step in new search direction
|
||||
x = x + alpha * d;
|
||||
if (k == n) break;
|
||||
|
||||
// update gradient
|
||||
g = g + alpha * (Ab ^ Ad);
|
||||
|
||||
// check for convergence
|
||||
double dotg = dot(g, g);
|
||||
if (dotg < threshold) break;
|
||||
|
||||
// calculate new search direction
|
||||
double beta = dotg / prev_dotg;
|
||||
prev_dotg = dotg;
|
||||
d = -g + beta * d;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
|
||||
double threshold) {
|
||||
return CGD<System, Vector, Vector> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||
const Vector& x, double threshold) {
|
||||
System Ab = make_pair(A, b);
|
||||
return CGD<System, Vector, Vector> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig gradient(const GaussianFactorGraph& fg, const VectorConfig& x) {
|
||||
return fg.gradient(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
|
||||
const VectorConfig& x, double threshold) {
|
||||
return CGD<GaussianFactorGraph, VectorConfig, Errors> (fg, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,34 @@
|
|||
/*
|
||||
* iterative.h
|
||||
* @brief Iterative methods, implementation
|
||||
* @author Frank Dellaert
|
||||
* Created on: Dec 28, 2009
|
||||
*/
|
||||
|
||||
#include "Matrix.h"
|
||||
namespace gtsam {
|
||||
|
||||
class GaussianFactorGraph;
|
||||
class VectorConfig;
|
||||
|
||||
typedef std::pair<Matrix, Vector> System;
|
||||
|
||||
/**
|
||||
* Method of conjugate gradients (CG), System version
|
||||
*/
|
||||
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
|
||||
double threshold = 1e-9);
|
||||
|
||||
/**
|
||||
* Method of conjugate gradients (CG), Matrix version
|
||||
*/
|
||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||
const Vector& x, double threshold = 1e-9);
|
||||
|
||||
/**
|
||||
* Method of conjugate gradients (CG), Gaussian Factor Graph version
|
||||
* */
|
||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
|
||||
const VectorConfig& x, double threshold = 1e-9);
|
||||
|
||||
} // namespace gtsam
|
|
@ -10,102 +10,14 @@ using namespace boost::assign;
|
|||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include "Ordering.h"
|
||||
#include "iterative.h"
|
||||
#include "smallExample.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig gradient(const GaussianFactorGraph& Ab, const VectorConfig& x) {
|
||||
return Ab.gradient(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
typedef pair<Matrix,Vector> System;
|
||||
|
||||
/**
|
||||
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
|
||||
*/
|
||||
Vector gradient(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
const Vector& b = Ab.second;
|
||||
return A ^ (A * x - b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A
|
||||
*/
|
||||
Vector operator*(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A * x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply operator A^T
|
||||
*/
|
||||
Vector operator^(const System& Ab, const Vector& x) {
|
||||
const Matrix& A = Ab.first;
|
||||
return A ^ x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG)
|
||||
// "System" class S needs gradient(S,v), e=S*v, v=S^e
|
||||
// "Vector" class V needs dot(v,v), -v, v+v, s*v
|
||||
// "Vector" class E needs dot(v,v)
|
||||
template <class S, class V, class E>
|
||||
V CGD(const S& Ab, V x, double threshold = 1e-9) {
|
||||
|
||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||
// i.e., first step is in direction of negative gradient
|
||||
V g = gradient(Ab, x);
|
||||
V d = -g;
|
||||
double prev_dotg = dot(g, g);
|
||||
|
||||
// loop max n times
|
||||
size_t n = x.size();
|
||||
for (int k = 1; k <= n; k++) {
|
||||
|
||||
// calculate optimal step-size
|
||||
E Ad = Ab * d;
|
||||
double alpha = -dot(d, g) / dot(Ad, Ad);
|
||||
|
||||
// do step in new search direction
|
||||
x = x + alpha * d;
|
||||
if (k == n) break;
|
||||
|
||||
// update gradient
|
||||
g = g + alpha * (Ab ^ Ad);
|
||||
|
||||
// check for convergence
|
||||
double dotg = dot(g, g);
|
||||
if (dotg < threshold) break;
|
||||
|
||||
// calculate new search direction
|
||||
double beta = dotg / prev_dotg;
|
||||
prev_dotg = dotg;
|
||||
d = -g + beta * d;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Matrix version
|
||||
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
|
||||
const Vector& x, double threshold = 1e-9) {
|
||||
System Ab = make_pair(A, b);
|
||||
return CGD<System, Vector, Vector> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Method of conjugate gradients (CG), Gaussian Factor Graph version
|
||||
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& Ab,
|
||||
const VectorConfig& x, double threshold = 1e-9) {
|
||||
return CGD<GaussianFactorGraph, VectorConfig, Errors> (Ab, x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianFactorGraph, gradientDescent )
|
||||
TEST( Iterative, gradientDescent )
|
||||
{
|
||||
// Expected solution
|
||||
Ordering ord;
|
||||
|
@ -136,7 +48,7 @@ TEST( GaussianFactorGraph, gradientDescent )
|
|||
|
||||
// Do conjugate gradient descent, System version
|
||||
System Ab = make_pair(A,b);
|
||||
Vector actualX2 = CGD<System,Vector,Vector>(Ab,x0);
|
||||
Vector actualX2 = conjugateGradientDescent(Ab,x0);
|
||||
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue