Clique marginal and dramatically simplified single variable marginal.
parent
10e618f360
commit
86173b66af
|
@ -7,6 +7,7 @@
|
|||
#include <boost/foreach.hpp>
|
||||
#include "BayesTree.h"
|
||||
#include "FactorGraph-inl.h"
|
||||
#include "BayesNet-inl.h"
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -19,6 +20,14 @@ namespace gtsam {
|
|||
this->push_back(conditional);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
Ordering BayesTree<Conditional>::Clique::keys() const {
|
||||
Ordering frontal_keys = this->ordering(), keys = separator_;
|
||||
keys.splice(keys.begin(),frontal_keys);
|
||||
return keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
void BayesTree<Conditional>::Clique::print(const string& s) const {
|
||||
|
@ -41,30 +50,27 @@ namespace gtsam {
|
|||
child->printTree(indent+" ");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// The shortcut density is a conditional P(S|R) of the separator of this
|
||||
// clique on the root. We can compute it recursively from the parent shortcut
|
||||
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
||||
// TODO, why do we actually return a shared pointer, why does eliminate?
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
template<class Factor>
|
||||
typename BayesTree<Conditional>::sharedBayesNet
|
||||
BayesTree<Conditional>::Clique::shortcut(shared_ptr R) {
|
||||
// The shortcut density is a conditional P(S|R) of the separator of this
|
||||
// clique on the root. We can compute it recursively from the parent shortcut
|
||||
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
||||
|
||||
// A first base case is when this clique or its parent is the root,
|
||||
// in which case we return an empty Bayes net.
|
||||
if (R.get()==this || parent_==R) {
|
||||
sharedBayesNet empty(new BayesNet<Conditional>);
|
||||
return empty;
|
||||
}
|
||||
if (R.get()==this || parent_==R)
|
||||
return sharedBayesNet(new BayesNet<Conditional>);
|
||||
|
||||
// The parent clique has a Conditional for each frontal node in Fp
|
||||
// so we can obtain P(Fp|Sp) in factor graph form
|
||||
FactorGraph<Factor> p_Fp_Sp(*parent_);
|
||||
//p_Fp_Sp.print("p_Fp_Sp");
|
||||
|
||||
// If not the base case, obtain the parent shortcut P(Sp|R) as factors
|
||||
FactorGraph<Factor> p_Sp_R(*parent_->shortcut<Factor>(R));
|
||||
//p_Sp_R.print("p_Sp_R");
|
||||
|
||||
// now combine P(Cp|R) = P(Fp|Sp) * P(Sp|R)
|
||||
FactorGraph<Factor> p_Cp_R = combine(p_Fp_Sp, p_Sp_R);
|
||||
|
@ -76,12 +82,7 @@ namespace gtsam {
|
|||
// Keys corresponding to the root should not be added to the ordering at all.
|
||||
|
||||
// Get the key list Cp=Fp+Sp, which will form the basis for the integrands
|
||||
Ordering integrands;
|
||||
{
|
||||
Ordering Fp = parent_->ordering(), Sp = parent_->separator_;
|
||||
integrands.splice(integrands.end(),Fp);
|
||||
integrands.splice(integrands.end(),Sp);
|
||||
}
|
||||
Ordering integrands = parent_->keys();
|
||||
|
||||
// Start ordering with the separator
|
||||
Ordering ordering = separator_;
|
||||
|
@ -108,6 +109,29 @@ namespace gtsam {
|
|||
return p_S_R;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// P(C) = \int_R P(F|S) P(S|R) P(R)
|
||||
// TODO: Maybe we should integrate given parent marginal P(Cp),
|
||||
// \int(Cp\S) P(F|S)P(S|Cp)P(Cp)
|
||||
// Because the root clique could be very big.
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
template<class Factor>
|
||||
BayesNet<Conditional>
|
||||
BayesTree<Conditional>::Clique::marginal(shared_ptr R) {
|
||||
// If we are the root, just return this root
|
||||
if (R.get()==this) return *R;
|
||||
|
||||
// Combine P(F|S), P(S|R), and P(R)
|
||||
sharedBayesNet p_FSR = this->shortcut<Factor>(R);
|
||||
p_FSR->push_front(*this);
|
||||
p_FSR->push_back(*R);
|
||||
|
||||
// Find marginal on the keys we are interested in
|
||||
BayesNet<Conditional> marginal = marginals<Factor>(*p_FSR,keys());
|
||||
return marginal;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
BayesTree<Conditional>::BayesTree() {
|
||||
|
@ -167,50 +191,23 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Desired: recursive, memoizing version
|
||||
// Once we know the clique, can we do all with Nodes ?
|
||||
// Sure, as P(x) = \int P(C|root)
|
||||
// The natural cache is P(C|root), memoized, of course, in the clique C
|
||||
// When any marginal is asked for, we calculate P(C|root) = P(C|Pi)P(Pi|root)
|
||||
// Super-naturally recursive !!!!!
|
||||
// First finds clique marginal then marginalizes that
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional>
|
||||
template<class Factor>
|
||||
typename BayesTree<Conditional>::sharedConditional
|
||||
BayesNet<Conditional>
|
||||
BayesTree<Conditional>::marginal(const string& key) const {
|
||||
|
||||
// get clique containing key, and remove all factors below key
|
||||
// get clique containing key
|
||||
sharedClique clique = (*this)[key];
|
||||
Ordering ordering = clique->ordering();
|
||||
FactorGraph<Factor> graph(*clique);
|
||||
while(ordering.front()!=key) {
|
||||
graph.findAndRemoveFactors(ordering.front());
|
||||
ordering.pop_front();
|
||||
}
|
||||
|
||||
// find all cliques on the path to the root and turn into factor graph
|
||||
while (clique->parent_!=NULL) {
|
||||
// move up the tree
|
||||
clique = clique->parent_;
|
||||
// calculate or retrieve its marginal
|
||||
BayesNet<Conditional> cliqueMarginal = clique->marginal<Factor>(root_);
|
||||
|
||||
// extend ordering
|
||||
Ordering cliqueOrdering = clique->ordering();
|
||||
ordering.splice (ordering.end(), cliqueOrdering);
|
||||
// Get the marginal on the single key
|
||||
BayesNet<Conditional> marginal = marginals<Factor>(cliqueMarginal,Ordering(key));
|
||||
|
||||
// extend factor graph
|
||||
FactorGraph<Factor> cliqueGraph(*clique);
|
||||
typename FactorGraph<Factor>::const_iterator factor=cliqueGraph.begin();
|
||||
for(; factor!=cliqueGraph.end(); factor++)
|
||||
graph.push_back(*factor);
|
||||
}
|
||||
|
||||
// TODO: can we prove reverse ordering is efficient?
|
||||
ordering.reverse();
|
||||
|
||||
// eliminate to get marginal
|
||||
sharedBayesNet chordalBayesNet = _eliminate<Factor,Conditional>(graph,ordering);
|
||||
|
||||
return chordalBayesNet->back(); // the root is the marginal
|
||||
return marginal;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -46,6 +46,9 @@ namespace gtsam {
|
|||
//* Constructor */
|
||||
Clique(const sharedConditional& conditional);
|
||||
|
||||
/** return keys in frontal:separator order */
|
||||
Ordering keys() const;
|
||||
|
||||
/** print this node */
|
||||
void print(const std::string& s = "Bayes tree node") const;
|
||||
|
||||
|
@ -62,7 +65,11 @@ namespace gtsam {
|
|||
|
||||
/** return the conditional P(S|Root) on the separator given the root */
|
||||
template<class Factor>
|
||||
sharedBayesNet shortcut(shared_ptr R);
|
||||
sharedBayesNet shortcut(shared_ptr root);
|
||||
|
||||
/** return the marginal P(C) of the clique */
|
||||
template<class Factor>
|
||||
BayesNet<Conditional> marginal(shared_ptr root);
|
||||
};
|
||||
|
||||
typedef boost::shared_ptr<Clique> sharedClique;
|
||||
|
@ -130,7 +137,7 @@ namespace gtsam {
|
|||
|
||||
/** return marginal on any variable */
|
||||
template<class Factor>
|
||||
sharedConditional marginal(const std::string& key) const;
|
||||
BayesNet<Conditional> marginal(const std::string& key) const;
|
||||
}; // BayesTree
|
||||
|
||||
} /// namespace gtsam
|
||||
|
|
|
@ -176,26 +176,20 @@ TEST( BayesTree, balanced_smoother_marginals )
|
|||
|
||||
// Marginals
|
||||
|
||||
// Marginal will always be axis-parallel Gaussian on delta=(0,0)
|
||||
Matrix R = eye(2);
|
||||
|
||||
// Check marginal on x1
|
||||
Vector sigma1 = repeat(2, 0.786153);
|
||||
ConditionalGaussian expected1("x1", delta, R, sigma1);
|
||||
ConditionalGaussian::shared_ptr actual1 = bayesTree.marginal<LinearFactor>("x1");
|
||||
CHECK(assert_equal(expected1,*actual1,1e-4));
|
||||
GaussianBayesNet expected1("x1", delta, 0.786153);
|
||||
BayesNet<ConditionalGaussian> actual1 = bayesTree.marginal<LinearFactor>("x1");
|
||||
CHECK(assert_equal((BayesNet<ConditionalGaussian>)expected1,actual1,1e-4));
|
||||
|
||||
// Check marginal on x2
|
||||
Vector sigma2 = repeat(2, 0.687131);
|
||||
ConditionalGaussian expected2("x2", delta, R, sigma2);
|
||||
ConditionalGaussian::shared_ptr actual2 = bayesTree.marginal<LinearFactor>("x2");
|
||||
CHECK(assert_equal(expected2,*actual2,1e-4));
|
||||
GaussianBayesNet expected2("x2", delta, 0.687131);
|
||||
BayesNet<ConditionalGaussian> actual2 = bayesTree.marginal<LinearFactor>("x2");
|
||||
CHECK(assert_equal((BayesNet<ConditionalGaussian>)expected2,actual2,1e-4));
|
||||
|
||||
// Check marginal on x3
|
||||
Vector sigma3 = repeat(2, 0.671512);
|
||||
ConditionalGaussian expected3("x3", delta, R, sigma3);
|
||||
ConditionalGaussian::shared_ptr actual3 = bayesTree.marginal<LinearFactor>("x3");
|
||||
CHECK(assert_equal(expected3,*actual3,1e-4));
|
||||
GaussianBayesNet expected3("x3", delta, 0.671512);
|
||||
BayesNet<ConditionalGaussian> actual3 = bayesTree.marginal<LinearFactor>("x3");
|
||||
CHECK(assert_equal((BayesNet<ConditionalGaussian>)expected3,actual3,1e-4));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -212,10 +206,10 @@ TEST( BayesTree, balanced_smoother_shortcuts )
|
|||
|
||||
// Create the Bayes tree
|
||||
Gaussian bayesTree(*chordalBayesNet);
|
||||
Gaussian::sharedClique R = bayesTree.root();
|
||||
|
||||
// Check the conditional P(Root|Root)
|
||||
BayesNet<ConditionalGaussian> empty;
|
||||
Gaussian::sharedClique R = bayesTree.root();
|
||||
Gaussian::sharedBayesNet actual1 = R->shortcut<LinearFactor>(R);
|
||||
CHECK(assert_equal(empty,*actual1,1e-4));
|
||||
|
||||
|
@ -232,6 +226,33 @@ TEST( BayesTree, balanced_smoother_shortcuts )
|
|||
CHECK(assert_equal(expected3,*actual3,1e-4));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( BayesTree, balanced_smoother_clique_marginals )
|
||||
{
|
||||
// Create smoother with 7 nodes
|
||||
LinearFactorGraph smoother = createSmoother(7);
|
||||
Ordering ordering;
|
||||
ordering += "x1","x3","x5","x7","x2","x6","x4";
|
||||
|
||||
// eliminate using a "nested dissection" ordering
|
||||
GaussianBayesNet::shared_ptr chordalBayesNet = smoother.eliminate(ordering);
|
||||
boost::shared_ptr<VectorConfig> actualSolution = chordalBayesNet->optimize();
|
||||
|
||||
// Create the Bayes tree
|
||||
Gaussian bayesTree(*chordalBayesNet);
|
||||
Gaussian::sharedClique R = bayesTree.root();
|
||||
|
||||
// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
|
||||
GaussianBayesNet expected3("x2",zero(2),0.687131);
|
||||
Vector sigma3 = repeat(2, 0.707107);
|
||||
Matrix A12 = (-0.5)*eye(2);
|
||||
ConditionalGaussian::shared_ptr cg3(new ConditionalGaussian("x1", zero(2), eye(2), "x2", A12, sigma3));
|
||||
expected3.push_front(cg3);
|
||||
Gaussian::sharedClique C3 = bayesTree["x1"];
|
||||
BayesNet<ConditionalGaussian> actual3 = C3->marginal<LinearFactor>(R);
|
||||
CHECK(assert_equal((BayesNet<ConditionalGaussian>)expected3,actual3,1e-4));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue