Fixed comments

release/4.3a0
krunalchande 2014-11-11 19:39:09 -05:00
parent 336b95d650
commit 8559fa9759
8 changed files with 160 additions and 109 deletions

View File

@ -1,39 +1,57 @@
/*
* ImuFactor.h
*
* Created on: Jun 29, 2014
* Author: krunal
*/
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AHRSFactor.h
* @author Krunal Chande, Luca Carlone
**/
#pragma once
/* GTSAM includes */
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
class AHRSFactor: public NoiseModelFactor3<Rot3, Rot3, imuBias::ConstantBias> {
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
/** CombinedPreintegratedMeasurements accumulates (integrates) the Gyroscope measurements (rotation rates)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated AHRS factor*/
class PreintegratedMeasurements {
public:
imuBias::ConstantBias biasHat;
Matrix measurementCovariance;
imuBias::ConstantBias biasHat;///< Acceleration and angular rate bias values used during preintegration. Note that we won't be using the accelerometer
Matrix measurementCovariance;///< (Raw measurements uncertainty) Covariance of the vector [measuredOmega] in R^(3X3)
Rot3 deltaRij;
double deltaTij;
Matrix3 delRdelBiasOmega;
Matrix PreintMeasCov;
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
double deltaTij; ///< Time interval from i to j
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
PreintegratedMeasurements(const imuBias::ConstantBias& bias,
const Matrix3& measuredOmegaCovariance) :
biasHat(bias), measurementCovariance(3,3), deltaTij(0.0),
/** Default constructor, initialize with no measurements */
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredOmegaCovariance ///< Covariance matrix of measured angular rate
) : biasHat(bias), measurementCovariance(3,3), deltaTij(0.0),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(3,3) {
// measurementCovariance << integrationErrorCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measurementAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance;
measurementCovariance <<measuredOmegaCovariance;
PreintMeasCov = Matrix::Zero(3,3);
}
@ -42,6 +60,7 @@ public:
biasHat(imuBias::ConstantBias()), measurementCovariance(Matrix::Zero(3,3)), deltaTij(0.0),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(3,3)) {}
/** print */
void print(const std::string& s = "Preintegrated Measurements: ") const {
std::cout << s << std::endl;
biasHat.print(" biasHat");
@ -51,6 +70,7 @@ public:
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
}
/** equals */
bool equals(const PreintegratedMeasurements& expected,
double tol = 1e-9) const {
return biasHat.equals(expected.biasHat, tol)
@ -64,14 +84,14 @@ public:
Matrix MeasurementCovariance() const {
return measurementCovariance;
}
Matrix deltaRij_() const {
Matrix DeltaRij() const {
return deltaRij.matrix();
}
double deltaTij_() const {
double DeltaTij() const {
return deltaTij;
}
Vector biasHat_() const {
Vector BiasHat() const {
return biasHat.vector();
}
@ -82,43 +102,65 @@ public:
PreintMeasCov = Matrix::Zero(9, 9);
}
/** Add a single Gyroscope measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredOmega, double deltaT,
boost::optional<const Pose3&> body_P_sensor = boost::none) {
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
// NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if (body_P_sensor) {
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega;
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body_cross = skewSymmetric(correctedOmega);
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT;
const Rot3 Rincr = Rot3::Expmap(theta_incr);
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr);
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega
- Jr_theta_incr * deltaT;
// Matrix3 Z_3x3 = Matrix::Zero();
// Matrix3 I_3x3 = Matrix::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij);
// Update preintegrated measurements covariance
/* ----------------------------------------------------------------------------------------------------------------------- */
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3inverse(theta_i);
Rot3 Rot_j = deltaRij * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j);
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(
theta_j);
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix()
* Jr_theta_i;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(3, 3);
F << H_angles_angles;
// first order uncertainty propagation
// the deltaT allows to pass from continuous time noise to discrete time noise
PreintMeasCov = F * PreintMeasCov * F.transpose()
+ measurementCovariance * deltaT;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
deltaRij = deltaRij * Rincr;
deltaTij += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
@ -155,8 +197,8 @@ private:
PreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_;
Vector3 omegaCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
boost::optional<Pose3> body_P_sensor_;///< The pose of the sensor in the body frame
public:
@ -171,20 +213,24 @@ public:
AHRSFactor() :
preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero()) {}
AHRSFactor(Key rot_i, Key rot_j, Key bias,
const PreintegratedMeasurements& preintegratedMeasurements,
const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none) :
AHRSFactor(
Key rot_i, ///< previous rot key
Key rot_j, ///< current rot key
Key bias,///< previous bias key
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated measurements
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
boost::optional<const Pose3&> body_P_sensor = boost::none ///< The Pose of the sensor frame in the body frame
) :
Base(
noiseModel::Gaussian::Covariance(
preintegratedMeasurements.PreintMeasCov), rot_i, rot_j, bias), preintegratedMeasurements_(
preintegratedMeasurements), omegaCoriolis_(
omegaCoriolis), body_P_sensor_(body_P_sensor) {
preintegratedMeasurements), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
body_P_sensor) {
}
virtual ~AHRSFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(
@ -193,6 +239,9 @@ public:
);
}
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
@ -206,6 +255,7 @@ public:
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected,
double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&expected);
@ -226,6 +276,9 @@ public:
return omegaCoriolis_;
}
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const Rot3& rot_i, const Rot3& rot_j,
const imuBias::ConstantBias& bias,
boost::optional<Matrix&> H1 = boost::none,
@ -321,7 +374,6 @@ public:
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected =
preintegratedMeasurements.deltaRij.retract(
preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr,
@ -349,7 +401,6 @@ private:
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
};
// AHRSFactor
}; // AHRSFactor
typedef AHRSFactor::PreintegratedMeasurements AHRSFactorPreintegratedMeasurements;
} //namespace gtsam

View File

@ -77,8 +77,8 @@ namespace gtsam {
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measured Angular Rate
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of integration errors
const bool use2ndOrderIntegration = false ///< Controls the order of integration
) : biasHat(bias), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
@ -95,7 +95,7 @@ namespace gtsam {
biasHat(imuBias::ConstantBias()), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9)
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9), use2ndOrderIntegration_(false)
{
measurementCovariance = Matrix::Zero(9,9);
PreintMeasCov = Matrix::Zero(9,9);
@ -324,7 +324,7 @@ namespace gtsam {
#endif
/** Default constructor - only use for serialization */
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()) {}
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()), use2ndOrderCoriolis_(false){}
/** Constructor */
ImuFactor(

View File

@ -12,7 +12,7 @@
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
* @author Krunal Chande, Luca Carlone
*/
#include <gtsam/navigation/AHRSFactor.h>

View File

@ -441,60 +441,60 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
#include <gtsam/linear/GaussianFactorGraph.h>
/* ************************************************************************* */
TEST( ImuFactor, LinearizeTiming)
{
// Linearization point
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
// Pre-integrator
imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
// Pre-integrate Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
for(size_t i = 0; i < 50; ++i) {
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
}
// Create factor
noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.preintegratedMeasurementsCovariance());
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
Values values;
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(V(1), v1);
values.insert(V(2), v2);
values.insert(B(1), bias);
Ordering ordering;
ordering.push_back(X(1));
ordering.push_back(V(1));
ordering.push_back(X(2));
ordering.push_back(V(2));
ordering.push_back(B(1));
GaussianFactorGraph graph;
gttic_(LinearizeTiming);
for(size_t i = 0; i < 100000; ++i) {
GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
graph.push_back(g);
}
gttoc_(LinearizeTiming);
tictoc_finishedIteration_();
std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
tictoc_print_();
}
//#include <gtsam/linear/GaussianFactorGraph.h>
///* ************************************************************************* */
//TEST( ImuFactor, LinearizeTiming)
//{
// // Linearization point
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
// imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
//
// // Pre-integrator
// imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
// Vector3 gravity; gravity << 0, 0, 9.81;
// Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
// ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
//
// // Pre-integrate Measurements
// Vector3 measuredAcc(0.1, 0.0, 0.0);
// Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
// double deltaT = 0.5;
// for(size_t i = 0; i < 50; ++i) {
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// }
//
// // Create factor
// noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.MeasurementCovariance());
// ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
//
// Values values;
// values.insert(X(1), x1);
// values.insert(X(2), x2);
// values.insert(V(1), v1);
// values.insert(V(2), v2);
// values.insert(B(1), bias);
//
// Ordering ordering;
// ordering.push_back(X(1));
// ordering.push_back(V(1));
// ordering.push_back(X(2));
// ordering.push_back(V(2));
// ordering.push_back(B(1));
//
// GaussianFactorGraph graph;
// gttic_(LinearizeTiming);
// for(size_t i = 0; i < 100000; ++i) {
// GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
// graph.push_back(g);
// }
// gttoc_(LinearizeTiming);
// tictoc_finishedIteration_();
// std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
// tictoc_print_();
//}
/* ************************************************************************* */

View File

@ -16,7 +16,7 @@
* @author Duy-Nguyen Ta
* @date Sep 29, 2014
*/
// Implementation is incorrect use DroneDynamicsVelXYFactor instead.
#pragma once
#include <boost/lexical_cast.hpp>

View File

@ -13,7 +13,7 @@
* @file testDistanceFactor.cpp
* @brief Unit tests for DistanceFactor Class
* @author Duy-Nguyen Ta
* @date Oct 2012
* @date Oct 2014
*/
#include <CppUnitLite/TestHarness.h>

View File

@ -12,8 +12,8 @@
/**
* @file testRangeFactor.cpp
* @brief Unit tests for DroneDynamicsFactor Class
* @author Stephen Williams
* @date Oct 2012
* @author Duy-Nguyen Ta
* @date Oct 2014
*/
#include <CppUnitLite/TestHarness.h>

View File

@ -12,8 +12,8 @@
/**
* @file testRangeFactor.cpp
* @brief Unit tests for DroneDynamicsVelXYFactor Class
* @author Stephen Williams
* @date Oct 2012
* @author Duy-Nguyen Ta
* @date Oct 2014
*/
#include <CppUnitLite/TestHarness.h>