Fixed comments
parent
336b95d650
commit
8559fa9759
|
@ -1,39 +1,57 @@
|
|||
/*
|
||||
* ImuFactor.h
|
||||
*
|
||||
* Created on: Jun 29, 2014
|
||||
* Author: krunal
|
||||
*/
|
||||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file AHRSFactor.h
|
||||
* @author Krunal Chande, Luca Carlone
|
||||
**/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* GTSAM includes */
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
|
||||
/* External or standard includes */
|
||||
#include <ostream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class AHRSFactor: public NoiseModelFactor3<Rot3, Rot3, imuBias::ConstantBias> {
|
||||
public:
|
||||
|
||||
/** Struct to store results of preintegrating IMU measurements. Can be build
|
||||
* incrementally so as to avoid costly integration at time of factor construction. */
|
||||
|
||||
/** CombinedPreintegratedMeasurements accumulates (integrates) the Gyroscope measurements (rotation rates)
|
||||
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated AHRS factor*/
|
||||
class PreintegratedMeasurements {
|
||||
public:
|
||||
imuBias::ConstantBias biasHat;
|
||||
Matrix measurementCovariance;
|
||||
imuBias::ConstantBias biasHat;///< Acceleration and angular rate bias values used during preintegration. Note that we won't be using the accelerometer
|
||||
Matrix measurementCovariance;///< (Raw measurements uncertainty) Covariance of the vector [measuredOmega] in R^(3X3)
|
||||
|
||||
Rot3 deltaRij;
|
||||
double deltaTij;
|
||||
Matrix3 delRdelBiasOmega;
|
||||
Matrix PreintMeasCov;
|
||||
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
|
||||
double deltaTij; ///< Time interval from i to j
|
||||
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
|
||||
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
|
||||
|
||||
PreintegratedMeasurements(const imuBias::ConstantBias& bias,
|
||||
const Matrix3& measuredOmegaCovariance) :
|
||||
biasHat(bias), measurementCovariance(3,3), deltaTij(0.0),
|
||||
/** Default constructor, initialize with no measurements */
|
||||
PreintegratedMeasurements(
|
||||
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
|
||||
const Matrix3& measuredOmegaCovariance ///< Covariance matrix of measured angular rate
|
||||
) : biasHat(bias), measurementCovariance(3,3), deltaTij(0.0),
|
||||
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(3,3) {
|
||||
// measurementCovariance << integrationErrorCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measurementAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance;
|
||||
measurementCovariance <<measuredOmegaCovariance;
|
||||
PreintMeasCov = Matrix::Zero(3,3);
|
||||
}
|
||||
|
@ -42,6 +60,7 @@ public:
|
|||
biasHat(imuBias::ConstantBias()), measurementCovariance(Matrix::Zero(3,3)), deltaTij(0.0),
|
||||
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(3,3)) {}
|
||||
|
||||
/** print */
|
||||
void print(const std::string& s = "Preintegrated Measurements: ") const {
|
||||
std::cout << s << std::endl;
|
||||
biasHat.print(" biasHat");
|
||||
|
@ -51,6 +70,7 @@ public:
|
|||
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
|
||||
}
|
||||
|
||||
/** equals */
|
||||
bool equals(const PreintegratedMeasurements& expected,
|
||||
double tol = 1e-9) const {
|
||||
return biasHat.equals(expected.biasHat, tol)
|
||||
|
@ -64,14 +84,14 @@ public:
|
|||
Matrix MeasurementCovariance() const {
|
||||
return measurementCovariance;
|
||||
}
|
||||
Matrix deltaRij_() const {
|
||||
Matrix DeltaRij() const {
|
||||
return deltaRij.matrix();
|
||||
}
|
||||
double deltaTij_() const {
|
||||
double DeltaTij() const {
|
||||
return deltaTij;
|
||||
}
|
||||
|
||||
Vector biasHat_() const {
|
||||
Vector BiasHat() const {
|
||||
return biasHat.vector();
|
||||
}
|
||||
|
||||
|
@ -82,43 +102,65 @@ public:
|
|||
PreintMeasCov = Matrix::Zero(9, 9);
|
||||
}
|
||||
|
||||
/** Add a single Gyroscope measurement to the preintegration. */
|
||||
void integrateMeasurement(
|
||||
const Vector3& measuredOmega, double deltaT,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none) {
|
||||
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
|
||||
double deltaT, ///< Time step
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
|
||||
) {
|
||||
|
||||
// NOTE: order is important here because each update uses old values.
|
||||
// First we compensate the measurements for the bias
|
||||
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if (body_P_sensor) {
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega;
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body_cross = skewSymmetric(correctedOmega);
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
const Vector3 theta_incr = correctedOmega * deltaT;
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr);
|
||||
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr);
|
||||
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
||||
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
|
||||
|
||||
// Update Jacobians
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega
|
||||
- Jr_theta_incr * deltaT;
|
||||
|
||||
// Matrix3 Z_3x3 = Matrix::Zero();
|
||||
// Matrix3 I_3x3 = Matrix::Identity();
|
||||
const Vector3 theta_i = Rot3::Logmap(deltaRij);
|
||||
// Update preintegrated measurements covariance
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
|
||||
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3inverse(theta_i);
|
||||
|
||||
Rot3 Rot_j = deltaRij * Rincr;
|
||||
const Vector3 theta_j = Rot3::Logmap(Rot_j);
|
||||
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
|
||||
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(
|
||||
theta_j);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
|
||||
// can be seen as a prediction phase in an EKF framework
|
||||
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix()
|
||||
* Jr_theta_i;
|
||||
// analytic expression corresponding to the following numerical derivative
|
||||
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
|
||||
|
||||
// overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix F(3, 3);
|
||||
F << H_angles_angles;
|
||||
|
||||
// first order uncertainty propagation
|
||||
// the deltaT allows to pass from continuous time noise to discrete time noise
|
||||
PreintMeasCov = F * PreintMeasCov * F.transpose()
|
||||
+ measurementCovariance * deltaT;
|
||||
|
||||
// Update preintegrated measurements
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
deltaRij = deltaRij * Rincr;
|
||||
deltaTij += deltaT;
|
||||
}
|
||||
|
||||
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
||||
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
|
||||
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
|
||||
|
@ -155,8 +197,8 @@ private:
|
|||
|
||||
PreintegratedMeasurements preintegratedMeasurements_;
|
||||
Vector3 gravity_;
|
||||
Vector3 omegaCoriolis_;
|
||||
boost::optional<Pose3> body_P_sensor_;
|
||||
Vector3 omegaCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
|
||||
boost::optional<Pose3> body_P_sensor_;///< The pose of the sensor in the body frame
|
||||
|
||||
public:
|
||||
|
||||
|
@ -171,20 +213,24 @@ public:
|
|||
AHRSFactor() :
|
||||
preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero()) {}
|
||||
|
||||
AHRSFactor(Key rot_i, Key rot_j, Key bias,
|
||||
const PreintegratedMeasurements& preintegratedMeasurements,
|
||||
const Vector3& omegaCoriolis,
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none) :
|
||||
Base(
|
||||
noiseModel::Gaussian::Covariance(
|
||||
preintegratedMeasurements.PreintMeasCov), rot_i, rot_j, bias), preintegratedMeasurements_(
|
||||
preintegratedMeasurements), omegaCoriolis_(
|
||||
omegaCoriolis), body_P_sensor_(body_P_sensor) {
|
||||
AHRSFactor(
|
||||
Key rot_i, ///< previous rot key
|
||||
Key rot_j, ///< current rot key
|
||||
Key bias,///< previous bias key
|
||||
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated measurements
|
||||
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
|
||||
boost::optional<const Pose3&> body_P_sensor = boost::none ///< The Pose of the sensor frame in the body frame
|
||||
) :
|
||||
Base(
|
||||
noiseModel::Gaussian::Covariance(
|
||||
preintegratedMeasurements.PreintMeasCov), rot_i, rot_j, bias), preintegratedMeasurements_(
|
||||
preintegratedMeasurements), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
|
||||
body_P_sensor) {
|
||||
}
|
||||
|
||||
virtual ~AHRSFactor() {}
|
||||
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(
|
||||
|
@ -193,6 +239,9 @@ public:
|
|||
);
|
||||
}
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
|
||||
|
@ -206,6 +255,7 @@ public:
|
|||
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor& expected,
|
||||
double tol = 1e-9) const {
|
||||
const This *e = dynamic_cast<const This*>(&expected);
|
||||
|
@ -226,6 +276,9 @@ public:
|
|||
return omegaCoriolis_;
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
Vector evaluateError(const Rot3& rot_i, const Rot3& rot_j,
|
||||
const imuBias::ConstantBias& bias,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
|
@ -321,7 +374,6 @@ public:
|
|||
|
||||
// Predict state at time j
|
||||
/* ---------------------------------------------------------------------------------------------------- */
|
||||
|
||||
const Rot3 deltaRij_biascorrected =
|
||||
preintegratedMeasurements.deltaRij.retract(
|
||||
preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr,
|
||||
|
@ -349,7 +401,6 @@ private:
|
|||
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
}
|
||||
};
|
||||
// AHRSFactor
|
||||
}; // AHRSFactor
|
||||
typedef AHRSFactor::PreintegratedMeasurements AHRSFactorPreintegratedMeasurements;
|
||||
} //namespace gtsam
|
||||
|
|
|
@ -77,8 +77,8 @@ namespace gtsam {
|
|||
PreintegratedMeasurements(
|
||||
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
|
||||
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
|
||||
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
|
||||
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
|
||||
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measured Angular Rate
|
||||
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of integration errors
|
||||
const bool use2ndOrderIntegration = false ///< Controls the order of integration
|
||||
) : biasHat(bias), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
|
||||
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
|
||||
|
@ -95,7 +95,7 @@ namespace gtsam {
|
|||
biasHat(imuBias::ConstantBias()), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
|
||||
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
|
||||
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
|
||||
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9)
|
||||
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9), use2ndOrderIntegration_(false)
|
||||
{
|
||||
measurementCovariance = Matrix::Zero(9,9);
|
||||
PreintMeasCov = Matrix::Zero(9,9);
|
||||
|
@ -324,7 +324,7 @@ namespace gtsam {
|
|||
#endif
|
||||
|
||||
/** Default constructor - only use for serialization */
|
||||
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()) {}
|
||||
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()), use2ndOrderCoriolis_(false){}
|
||||
|
||||
/** Constructor */
|
||||
ImuFactor(
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
/**
|
||||
* @file testImuFactor.cpp
|
||||
* @brief Unit test for ImuFactor
|
||||
* @author Luca Carlone, Stephen Williams, Richard Roberts
|
||||
* @author Krunal Chande, Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
|
|
|
@ -441,60 +441,60 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
|
|||
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
|
||||
}
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
/* ************************************************************************* */
|
||||
TEST( ImuFactor, LinearizeTiming)
|
||||
{
|
||||
// Linearization point
|
||||
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
|
||||
|
||||
// Pre-integrator
|
||||
imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
|
||||
Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
|
||||
ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
|
||||
|
||||
// Pre-integrate Measurements
|
||||
Vector3 measuredAcc(0.1, 0.0, 0.0);
|
||||
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
|
||||
double deltaT = 0.5;
|
||||
for(size_t i = 0; i < 50; ++i) {
|
||||
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
}
|
||||
|
||||
// Create factor
|
||||
noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.preintegratedMeasurementsCovariance());
|
||||
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
|
||||
|
||||
Values values;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
values.insert(V(1), v1);
|
||||
values.insert(V(2), v2);
|
||||
values.insert(B(1), bias);
|
||||
|
||||
Ordering ordering;
|
||||
ordering.push_back(X(1));
|
||||
ordering.push_back(V(1));
|
||||
ordering.push_back(X(2));
|
||||
ordering.push_back(V(2));
|
||||
ordering.push_back(B(1));
|
||||
|
||||
GaussianFactorGraph graph;
|
||||
gttic_(LinearizeTiming);
|
||||
for(size_t i = 0; i < 100000; ++i) {
|
||||
GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
|
||||
graph.push_back(g);
|
||||
}
|
||||
gttoc_(LinearizeTiming);
|
||||
tictoc_finishedIteration_();
|
||||
std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
|
||||
tictoc_print_();
|
||||
}
|
||||
//#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
///* ************************************************************************* */
|
||||
//TEST( ImuFactor, LinearizeTiming)
|
||||
//{
|
||||
// // Linearization point
|
||||
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
|
||||
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
|
||||
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
|
||||
// imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
|
||||
//
|
||||
// // Pre-integrator
|
||||
// imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
|
||||
// Vector3 gravity; gravity << 0, 0, 9.81;
|
||||
// Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
|
||||
// ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
|
||||
//
|
||||
// // Pre-integrate Measurements
|
||||
// Vector3 measuredAcc(0.1, 0.0, 0.0);
|
||||
// Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
|
||||
// double deltaT = 0.5;
|
||||
// for(size_t i = 0; i < 50; ++i) {
|
||||
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
// }
|
||||
//
|
||||
// // Create factor
|
||||
// noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.MeasurementCovariance());
|
||||
// ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
|
||||
//
|
||||
// Values values;
|
||||
// values.insert(X(1), x1);
|
||||
// values.insert(X(2), x2);
|
||||
// values.insert(V(1), v1);
|
||||
// values.insert(V(2), v2);
|
||||
// values.insert(B(1), bias);
|
||||
//
|
||||
// Ordering ordering;
|
||||
// ordering.push_back(X(1));
|
||||
// ordering.push_back(V(1));
|
||||
// ordering.push_back(X(2));
|
||||
// ordering.push_back(V(2));
|
||||
// ordering.push_back(B(1));
|
||||
//
|
||||
// GaussianFactorGraph graph;
|
||||
// gttic_(LinearizeTiming);
|
||||
// for(size_t i = 0; i < 100000; ++i) {
|
||||
// GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
|
||||
// graph.push_back(g);
|
||||
// }
|
||||
// gttoc_(LinearizeTiming);
|
||||
// tictoc_finishedIteration_();
|
||||
// std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
|
||||
// tictoc_print_();
|
||||
//}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
* @author Duy-Nguyen Ta
|
||||
* @date Sep 29, 2014
|
||||
*/
|
||||
|
||||
// Implementation is incorrect use DroneDynamicsVelXYFactor instead.
|
||||
#pragma once
|
||||
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
* @file testDistanceFactor.cpp
|
||||
* @brief Unit tests for DistanceFactor Class
|
||||
* @author Duy-Nguyen Ta
|
||||
* @date Oct 2012
|
||||
* @date Oct 2014
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
|
|
@ -12,8 +12,8 @@
|
|||
/**
|
||||
* @file testRangeFactor.cpp
|
||||
* @brief Unit tests for DroneDynamicsFactor Class
|
||||
* @author Stephen Williams
|
||||
* @date Oct 2012
|
||||
* @author Duy-Nguyen Ta
|
||||
* @date Oct 2014
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
|
|
@ -12,8 +12,8 @@
|
|||
/**
|
||||
* @file testRangeFactor.cpp
|
||||
* @brief Unit tests for DroneDynamicsVelXYFactor Class
|
||||
* @author Stephen Williams
|
||||
* @date Oct 2012
|
||||
* @author Duy-Nguyen Ta
|
||||
* @date Oct 2014
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
|
Loading…
Reference in New Issue