Fixed bug in Kalman filter when using LDL.

release/4.3a0
Frank Dellaert 2012-01-20 22:28:53 +00:00
parent 1dc669d463
commit 852a1c0a0f
3 changed files with 46 additions and 28 deletions

View File

@ -25,11 +25,15 @@
#include <gtsam/linear/KalmanFilter.h>
#include <gtsam/linear/SharedGaussian.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/base/Testable.h>
namespace gtsam {
using namespace std;
/// Auxiliary function to solve factor graph and return pointer to root conditional
GaussianConditional* solve(GaussianFactorGraph& factorGraph, bool useQR) {
GaussianConditional::shared_ptr solve(GaussianFactorGraph& factorGraph,
bool useQR) {
// Solve the factor graph
GaussianSequentialSolver solver(factorGraph, useQR);
@ -37,14 +41,12 @@ namespace gtsam {
// As this is a filter, all we need is the posterior P(x_t),
// so we just keep the root of the Bayes net
// We need to create a new density, because we always keep the index at 0
const GaussianConditional::shared_ptr& r = bayesNet->back();
return new GaussianConditional(0, r->get_d(), r->get_R(), r->get_sigmas());
return bayesNet->back();
}
/* ************************************************************************* */
KalmanFilter::KalmanFilter(size_t n, GaussianConditional* density,
Factorization method) :
KalmanFilter::KalmanFilter(size_t n,
const GaussianConditional::shared_ptr& density, Factorization method) :
n_(n), I_(eye(n_, n_)), method_(method), density_(density) {
}
@ -70,7 +72,7 @@ namespace gtsam {
// Create a factor graph f(x0), eliminate it into P(x0)
GaussianFactorGraph factorGraph;
factorGraph.add(0, I_, x0, P0); // |x-x0|^2_diagSigma
density_.reset(solve(factorGraph, method_ == QR));
density_ = solve(factorGraph, method_ == QR);
}
/* ************************************************************************* */
@ -83,17 +85,29 @@ namespace gtsam {
// 0.5*(x-x0)'*inv(Sigma)*(x-x0)
HessianFactor::shared_ptr factor(new HessianFactor(0, x, P0));
factorGraph.push_back(factor);
density_.reset(solve(factorGraph, method_ == QR));
density_ = solve(factorGraph, method_ == QR);
}
/* ************************************************************************* */
void KalmanFilter::print(const string& s) const {
cout << s << "\n";
density_->print("density: ");
Vector m = mean();
Matrix P = covariance();
gtsam::print(m, "mean: ");
gtsam::print(P, "covariance: ");
}
/* ************************************************************************* */
Vector KalmanFilter::mean() const {
// Solve for mean
Index nVars = 1;
VectorValues x(nVars, n_);
VectorValues x;
Index k = step();
// a VectorValues that only has a value for k: cannot be printed
x.insert(k, Vector(n_));
density_->rhs(x);
density_->solveInPlace(x);
return x[0];
return x[k];
}
/* ************************************************************************* */
@ -112,7 +126,8 @@ namespace gtsam {
// The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
return add(new JacobianFactor(0, -F, 1, I_, B * u, model));
Index k = step();
return add(new JacobianFactor(k, -F, k+1, I_, B * u, model));
}
/* ************************************************************************* */
@ -136,7 +151,8 @@ namespace gtsam {
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
double f = dot(b, g2);
return add(new HessianFactor(0, 1, G11, G12, g1, G22, g2, f));
Index k = step();
return add(new HessianFactor(k, k+1, G11, G12, g1, G22, g2, f));
}
/* ************************************************************************* */
@ -144,7 +160,8 @@ namespace gtsam {
const Vector& b, const SharedDiagonal& model) {
// Nhe factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
return add(new JacobianFactor(0, A0, 1, A1, b, model));
Index k = step();
return add(new JacobianFactor(k, A0, k+1, A1, b, model));
}
/* ************************************************************************* */
@ -153,7 +170,8 @@ namespace gtsam {
// The factor related to the measurements would be defined as
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
return add(new JacobianFactor(0, H, z, model));
Index k = step();
return add(new JacobianFactor(k, H, z, model));
}
/* ************************************************************************* */

View File

@ -57,8 +57,8 @@ namespace gtsam {
GaussianConditional::shared_ptr density_;
/// private constructor
KalmanFilter(size_t n, GaussianConditional* density, Factorization method =
KALMANFILTER_DEFAULT_FACTORIZATION);
KalmanFilter(size_t n, const GaussianConditional::shared_ptr& density,
Factorization method = KALMANFILTER_DEFAULT_FACTORIZATION);
/// add a new factor and marginalize to new Kalman filter
KalmanFilter add(GaussianFactor* newFactor);
@ -84,13 +84,10 @@ namespace gtsam {
KALMANFILTER_DEFAULT_FACTORIZATION);
/// print
void print(const std::string& s = "") const {
std::cout << s << "\n";
Vector m = mean();
Matrix P = covariance();
gtsam::print(m, "mean: ");
gtsam::print(P, "covariance: ");
}
void print(const std::string& s = "") const;
/** Return step index k, starts at 0, incremented at each predict. */
Index step() const { return density_->firstFrontalKey();}
/** Return mean of posterior P(x|Z) at given all measurements Z */
Vector mean() const;

View File

@ -18,10 +18,9 @@
*/
#include <gtsam/linear/KalmanFilter.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/SharedDiagonal.h>
#include <gtsam/linear/SharedGaussian.h>
#include <gtsam/linear/SharedNoiseModel.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
@ -115,9 +114,11 @@ TEST( KalmanFilter, linear1 ) {
// Run iteration 3
KalmanFilter KF3p = KF2.predict(F, B, u, modelQ);
EXPECT(assert_equal(expected3,KF3p.mean()));
LONGS_EQUAL(3,KF3p.step());
KalmanFilter KF3 = KF3p.update(H,z3,modelR);
EXPECT(assert_equal(expected3,KF3.mean()));
LONGS_EQUAL(3,KF3.step());
}
/* ************************************************************************* */
@ -192,9 +193,11 @@ TEST( KalmanFilter, QRvsCholesky ) {
// Create two KalmanFilter using different factorization method and compare
KalmanFilter KFa = KalmanFilter(mean, covariance,KalmanFilter::QR).predictQ(Psi_k,B,u,dt_Q_k);
KalmanFilter KFb = KalmanFilter(mean, covariance,KalmanFilter::LDL).predictQ(Psi_k,B,u,dt_Q_k);
// Check that they yield the same result
EXPECT(assert_equal(KFa.mean(),KFb.mean()));
// EXPECT(assert_equal(KFa.information(),KFb.information()));
// EXPECT(assert_equal(KFa.covariance(),KFb.covariance()));
EXPECT(assert_equal(KFa.information(),KFb.information(),1e-7));
EXPECT(assert_equal(KFa.covariance(),KFb.covariance(),1e-7));
}
/* ************************************************************************* */