inverse action, much nicer
parent
67fb7fa9ff
commit
84c25b2346
63
doc/math.lyx
63
doc/math.lyx
|
@ -54,7 +54,7 @@ Geometry Derivatives and Other Hairy Math
|
|||
Frank Dellaert
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_layout Standard
|
||||
\begin_inset Box Frameless
|
||||
position "t"
|
||||
hor_pos "c"
|
||||
|
@ -326,7 +326,7 @@ Derivatives of Lie Group Mappings
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
New
|
||||
Homomorphisms
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -410,6 +410,10 @@ e^{-\xhat}=\left(e^{-\xhat}\right)^{-1}\]
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Let us define two mappings
|
||||
\begin_inset Formula \[
|
||||
\Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB\]
|
||||
|
@ -423,10 +427,15 @@ Then
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Old
|
||||
Derivatives
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -903,28 +912,22 @@ we would now like to know what an incremental action
|
|||
\begin_inset Formula \begin{eqnarray*}
|
||||
q(x) & = & \left(Te^{\xhat}\right)^{-1}p\\
|
||||
& = & e^{-\xhat}T^{-1}p\\
|
||||
& = & T^{-1}Te^{-\xhat}T^{-1}p\\
|
||||
& = & -T^{-1}\exp\left(T\xhat T^{-1}\right)p\end{eqnarray*}
|
||||
& = & e^{-\xhat}q\\
|
||||
& \approx & q-\xhat q\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Hence
|
||||
\begin_inset Formula \begin{equation}
|
||||
\deriv{q(x)}x=-T^{-1}\deriv{\left(T\xhat T^{-1}\mbox{ }p\right)}x\label{eq:inverseAction}\end{equation}
|
||||
\deriv{q(x)}x=\deriv{\left(q-\xhat q\right)}x=-\deriv{\left(\xhat q\right)}x=-H_{q}\label{eq:inverseAction}\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
The derivative in
|
||||
\begin_inset Formula $p$
|
||||
where
|
||||
\begin_inset Formula $H_{q}$
|
||||
\end_inset
|
||||
|
||||
is again easy for matrix Lie groups:
|
||||
\begin_inset Formula \[
|
||||
\deriv{\left(T^{-1}p\right)}p=T^{-1}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
will be as above.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
@ -1679,6 +1682,36 @@ in homogenous coordinates.
|
|||
|
||||
\end_inset
|
||||
|
||||
The derivative of the inverse action
|
||||
\begin_inset Formula $T^{-1}p$
|
||||
\end_inset
|
||||
|
||||
is given by formula
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:inverseAction"
|
||||
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\noun off
|
||||
\color none
|
||||
\begin_inset Formula \[
|
||||
\deriv{\hat{q}(\xi)}{\xi}=-H_{q}=\left[\begin{array}{cc}
|
||||
\Skew q & -I_{3}\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
Loading…
Reference in New Issue