separate MPE method in Hybrid Bayes Net/Tree
parent
d5f304ef50
commit
8460452990
|
@ -124,7 +124,7 @@ GaussianBayesNet HybridBayesNet::choose(
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
HybridValues HybridBayesNet::optimize() const {
|
DiscreteValues HybridBayesNet::mpe() const {
|
||||||
// Collect all the discrete factors to compute MPE
|
// Collect all the discrete factors to compute MPE
|
||||||
DiscreteFactorGraph discrete_fg;
|
DiscreteFactorGraph discrete_fg;
|
||||||
|
|
||||||
|
@ -140,9 +140,13 @@ HybridValues HybridBayesNet::optimize() const {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return discrete_fg.optimize();
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridValues HybridBayesNet::optimize() const {
|
||||||
// Solve for the MPE
|
// Solve for the MPE
|
||||||
DiscreteValues mpe = discrete_fg.optimize();
|
DiscreteValues mpe = this->mpe();
|
||||||
|
|
||||||
// Given the MPE, compute the optimal continuous values.
|
// Given the MPE, compute the optimal continuous values.
|
||||||
return HybridValues(optimize(mpe), mpe);
|
return HybridValues(optimize(mpe), mpe);
|
||||||
|
|
|
@ -146,6 +146,14 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
||||||
return evaluate(values);
|
return evaluate(values);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the Most Probable Explanation (MPE)
|
||||||
|
* of the discrete variables.
|
||||||
|
*
|
||||||
|
* @return DiscreteValues
|
||||||
|
*/
|
||||||
|
DiscreteValues mpe() const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Solve the HybridBayesNet by first computing the MPE of all the
|
* @brief Solve the HybridBayesNet by first computing the MPE of all the
|
||||||
* discrete variables and then optimizing the continuous variables based on
|
* discrete variables and then optimizing the continuous variables based on
|
||||||
|
|
|
@ -59,7 +59,7 @@ DiscreteValues HybridBayesTree::discreteMaxProduct(
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
HybridValues HybridBayesTree::optimize() const {
|
DiscreteValues HybridBayesTree::mpe() const {
|
||||||
DiscreteFactorGraph discrete_fg;
|
DiscreteFactorGraph discrete_fg;
|
||||||
DiscreteValues mpe;
|
DiscreteValues mpe;
|
||||||
|
|
||||||
|
@ -73,11 +73,16 @@ HybridValues HybridBayesTree::optimize() const {
|
||||||
discrete_fg.push_back(discrete);
|
discrete_fg.push_back(discrete);
|
||||||
mpe = discreteMaxProduct(discrete_fg);
|
mpe = discreteMaxProduct(discrete_fg);
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error(
|
mpe = DiscreteValues();
|
||||||
"HybridBayesTree root is not discrete-only. Please check elimination "
|
|
||||||
"ordering or use continuous factor graph.");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
return mpe;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridValues HybridBayesTree::optimize() const {
|
||||||
|
DiscreteValues mpe = this->mpe();
|
||||||
|
|
||||||
VectorValues values = optimize(mpe);
|
VectorValues values = optimize(mpe);
|
||||||
return HybridValues(values, mpe);
|
return HybridValues(values, mpe);
|
||||||
}
|
}
|
||||||
|
|
|
@ -105,6 +105,14 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
||||||
*/
|
*/
|
||||||
VectorValues optimize(const DiscreteValues& assignment) const;
|
VectorValues optimize(const DiscreteValues& assignment) const;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the Most Probable Explanation (MPE)
|
||||||
|
* of the discrete variables.
|
||||||
|
*
|
||||||
|
* @return DiscreteValues
|
||||||
|
*/
|
||||||
|
DiscreteValues mpe() const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Prune the underlying Bayes tree.
|
* @brief Prune the underlying Bayes tree.
|
||||||
*
|
*
|
||||||
|
|
Loading…
Reference in New Issue