separate MPE method in Hybrid Bayes Net/Tree
parent
d5f304ef50
commit
8460452990
|
@ -124,7 +124,7 @@ GaussianBayesNet HybridBayesNet::choose(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
DiscreteValues HybridBayesNet::mpe() const {
|
||||
// Collect all the discrete factors to compute MPE
|
||||
DiscreteFactorGraph discrete_fg;
|
||||
|
||||
|
@ -140,9 +140,13 @@ HybridValues HybridBayesNet::optimize() const {
|
|||
}
|
||||
}
|
||||
}
|
||||
return discrete_fg.optimize();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
// Solve for the MPE
|
||||
DiscreteValues mpe = discrete_fg.optimize();
|
||||
DiscreteValues mpe = this->mpe();
|
||||
|
||||
// Given the MPE, compute the optimal continuous values.
|
||||
return HybridValues(optimize(mpe), mpe);
|
||||
|
|
|
@ -146,6 +146,14 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
return evaluate(values);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the Most Probable Explanation (MPE)
|
||||
* of the discrete variables.
|
||||
*
|
||||
* @return DiscreteValues
|
||||
*/
|
||||
DiscreteValues mpe() const;
|
||||
|
||||
/**
|
||||
* @brief Solve the HybridBayesNet by first computing the MPE of all the
|
||||
* discrete variables and then optimizing the continuous variables based on
|
||||
|
|
|
@ -59,7 +59,7 @@ DiscreteValues HybridBayesTree::discreteMaxProduct(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesTree::optimize() const {
|
||||
DiscreteValues HybridBayesTree::mpe() const {
|
||||
DiscreteFactorGraph discrete_fg;
|
||||
DiscreteValues mpe;
|
||||
|
||||
|
@ -73,11 +73,16 @@ HybridValues HybridBayesTree::optimize() const {
|
|||
discrete_fg.push_back(discrete);
|
||||
mpe = discreteMaxProduct(discrete_fg);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"HybridBayesTree root is not discrete-only. Please check elimination "
|
||||
"ordering or use continuous factor graph.");
|
||||
mpe = DiscreteValues();
|
||||
}
|
||||
|
||||
return mpe;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesTree::optimize() const {
|
||||
DiscreteValues mpe = this->mpe();
|
||||
|
||||
VectorValues values = optimize(mpe);
|
||||
return HybridValues(values, mpe);
|
||||
}
|
||||
|
|
|
@ -105,6 +105,14 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
|||
*/
|
||||
VectorValues optimize(const DiscreteValues& assignment) const;
|
||||
|
||||
/**
|
||||
* @brief Compute the Most Probable Explanation (MPE)
|
||||
* of the discrete variables.
|
||||
*
|
||||
* @return DiscreteValues
|
||||
*/
|
||||
DiscreteValues mpe() const;
|
||||
|
||||
/**
|
||||
* @brief Prune the underlying Bayes tree.
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue