Added dense matrix test case in power/acc

release/4.3a0
jingwuOUO 2020-11-30 18:52:33 -05:00
parent 6d9f95d32e
commit 844cbead2b
2 changed files with 91 additions and 2 deletions

View File

@ -63,7 +63,7 @@ TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
}
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, useFactorGraph) {
TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
@ -102,6 +102,54 @@ TEST(AcceleratedPowerMethod, useFactorGraph) {
EXPECT_DOUBLES_EQUAL(0, ritzResidual, 1e-5);
}
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, useFactorGraphDense) {
// Let's make a scalar synchronization graph with 10 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
// Each node has an edge with all the others
for (size_t j = 0; j < 10; j++) {
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
}
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();
Eigen::EigenSolver<Matrix> solver(L.first);
// find the index of the max eigenvalue
size_t maxIdx = 0;
for (auto i = 0; i < solver.eigenvalues().rows(); ++i) {
if (solver.eigenvalues()(i).real() >= solver.eigenvalues()(maxIdx).real())
maxIdx = i;
}
// Store the max eigenvalue and its according eigenvector
const auto ev1 = solver.eigenvalues()(maxIdx).real();
Vector disturb = Vector10::Random();
disturb.normalize();
Vector initial = L.first.row(0);
double magnitude = initial.norm();
initial += 0.03 * magnitude * disturb;
AcceleratedPowerMethod<Matrix> apf(L.first, initial);
apf.compute(100, 1e-5);
// Check if the eigenvalue is the maximum eigen value
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalue(), 1e-8);
// Check if the according ritz residual converged to the threshold
Vector actual1 = apf.eigenvector();
const double ritzValue = actual1.dot(L.first * actual1);
const double ritzResidual = (L.first * actual1 - ritzValue * actual1).norm();
EXPECT_DOUBLES_EQUAL(0, ritzResidual, 1e-5);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -61,7 +61,7 @@ TEST(PowerMethod, powerIteration) {
}
/* ************************************************************************* */
TEST(PowerMethod, useFactorGraph) {
TEST(PowerMethod, useFactorGraphSparse) {
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
@ -93,6 +93,47 @@ TEST(PowerMethod, useFactorGraph) {
EXPECT_DOUBLES_EQUAL(0, ritzResidual, 1e-5);
}
/* ************************************************************************* */
TEST(PowerMethod, useFactorGraphDense) {
// Let's make a scalar synchronization graph with 10 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
// Each node has an edge with all the others
for (size_t j = 0; j < 10; j++) {
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
}
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();
Eigen::EigenSolver<Matrix> solver(L.first);
// find the index of the max eigenvalue
size_t maxIdx = 0;
for (auto i = 0; i < solver.eigenvalues().rows(); ++i) {
if (solver.eigenvalues()(i).real() >= solver.eigenvalues()(maxIdx).real())
maxIdx = i;
}
// Store the max eigenvalue and its according eigenvector
const auto ev1 = solver.eigenvalues()(maxIdx).real();
Vector initial = Vector10::Random();
PowerMethod<Matrix> pf(L.first, initial);
pf.compute(100, 1e-5);
EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalue(), 1e-8);
auto actual2 = pf.eigenvector();
const double ritzValue = actual2.dot(L.first * actual2);
const double ritzResidual = (L.first * actual2 - ritzValue * actual2).norm();
EXPECT_DOUBLES_EQUAL(0, ritzResidual, 1e-5);
}
/* ************************************************************************* */
int main() {
TestResult tr;