last test to get running

release/4.3a0
Varun Agrawal 2022-08-17 16:28:47 -04:00
parent ac20cff710
commit 83b8103db3
2 changed files with 183 additions and 189 deletions

View File

@ -75,8 +75,6 @@ void HybridGaussianISAM::updateInternal(
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
// KeyVector new
// Get an ordering where the new keys are eliminated last
const VariableIndex index(factors);
Ordering elimination_ordering;

View File

@ -393,221 +393,217 @@ TEST(HybridGaussianISAM, NonTrivial) {
/*************** Run Round 1 ***************/
HybridNonlinearFactorGraph fg;
// // Add a prior on pose x1 at the origin.
// // A prior factor consists of a mean and
// // a noise model (covariance matrix)
// Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
// auto priorNoise = noiseModel::Diagonal::Sigmas(
// Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
// fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
// Add a prior on pose x1 at the origin.
// A prior factor consists of a mean and
// a noise model (covariance matrix)
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
auto priorNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
// // create a noise model for the landmark measurements
// auto poseNoise = noiseModel::Isotropic::Sigma(3, 0.1);
// create a noise model for the landmark measurements
auto poseNoise = noiseModel::Isotropic::Sigma(3, 0.1);
// // We model a robot's single leg as X - Y - Z - W
// // where X is the base link and W is the foot link.
// We model a robot's single leg as X - Y - Z - W
// where X is the base link and W is the foot link.
// // Add connecting poses similar to PoseFactors in GTD
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
// poseNoise);
// Add connecting poses similar to PoseFactors in GTD
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
poseNoise);
// // Create initial estimate
// Values initial;
// initial.insert(X(0), Pose2(0.0, 0.0, 0.0));
// initial.insert(Y(0), Pose2(0.0, 1.0, 0.0));
// initial.insert(Z(0), Pose2(0.0, 2.0, 0.0));
// initial.insert(W(0), Pose2(0.0, 3.0, 0.0));
// Create initial estimate
Values initial;
initial.insert(X(0), Pose2(0.0, 0.0, 0.0));
initial.insert(Y(0), Pose2(0.0, 1.0, 0.0));
initial.insert(Z(0), Pose2(0.0, 2.0, 0.0));
initial.insert(W(0), Pose2(0.0, 3.0, 0.0));
// HybridGaussianFactorGraph gfg = fg.linearize(initial);
// fg = HybridNonlinearFactorGraph();
HybridGaussianFactorGraph gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// HybridGaussianISAM inc;
HybridGaussianISAM inc;
// // Regular ordering going up the chain.
// Ordering ordering;
// ordering += W(0);
// ordering += Z(0);
// ordering += Y(0);
// ordering += X(0);
// Regular ordering going up the chain.
Ordering ordering;
ordering += W(0);
ordering += Z(0);
ordering += Y(0);
ordering += X(0);
// // Update without pruning
// // The result is a HybridBayesNet with no discrete variables
// // (equivalent to a GaussianBayesNet).
// // Factorization is:
// // `P(X | measurements) = P(W0|Z0) P(Z0|Y0) P(Y0|X0) P(X0)`
// inc.update(gfg, ordering);
// Update without pruning
// The result is a HybridBayesNet with no discrete variables
// (equivalent to a GaussianBayesNet).
// Factorization is:
// `P(X | measurements) = P(W0|Z0) P(Z0|Y0) P(Y0|X0) P(X0)`
// TODO(Varun) ClusterTree-inst.h L202 segfaults with custom ordering.
inc.update(gfg);
// /*************** Run Round 2 ***************/
// using PlanarMotionModel = BetweenFactor<Pose2>;
/*************** Run Round 2 ***************/
using PlanarMotionModel = BetweenFactor<Pose2>;
// // Add odometry factor with discrete modes.
// Pose2 odometry(1.0, 0.0, 0.0);
// KeyVector contKeys = {W(0), W(1)};
// auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
// auto still = boost::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0,
// 0, 0),
// noise_model),
// moving = boost::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
// noise_model);
// std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
// auto dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
// fg.push_back(dcFactor);
// Add odometry factor with discrete modes.
Pose2 odometry(1.0, 0.0, 0.0);
KeyVector contKeys = {W(0), W(1)};
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
auto still = boost::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0, 0),
noise_model),
moving = boost::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
auto mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
fg.push_back(mixtureFactor);
// // Add equivalent of ImuFactor
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0,
// 0),
// poseNoise);
// // PoseFactors-like at k=1
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
// poseNoise);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=1
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
poseNoise);
// initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
// initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
// initial.insert(Z(1), Pose2(1.0, 2.0, 0.0));
// // The leg link did not move so we set the expected pose accordingly.
// initial.insert(W(1), Pose2(0.0, 3.0, 0.0));
initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
initial.insert(Z(1), Pose2(1.0, 2.0, 0.0));
// The leg link did not move so we set the expected pose accordingly.
initial.insert(W(1), Pose2(0.0, 3.0, 0.0));
// // Ordering for k=1.
// // This ordering follows the intuition that we eliminate the previous
// // timestep, and then the current timestep.
// ordering = Ordering();
// ordering += W(0);
// ordering += Z(0);
// ordering += Y(0);
// ordering += X(0);
// ordering += W(1);
// ordering += Z(1);
// ordering += Y(1);
// ordering += X(1);
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// gfg = fg.linearize(initial);
// fg = HybridNonlinearFactorGraph();
// Ordering for k=1.
// This ordering follows the intuition that we eliminate the previous
// timestep, and then the current timestep.
ordering = Ordering();
ordering += W(0);
ordering += Z(0);
ordering += Y(0);
ordering += X(0);
ordering += W(1);
ordering += Z(1);
ordering += Y(1);
ordering += X(1);
// // Update without pruning
// // The result is a HybridBayesNet with 1 discrete variable M(1).
// // P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1,
// M1)
// // P(X0 | X1, W1, M1) P(W1|Z1, X1, M1) P(Z1|Y1, X1,
// M1)
// // P(Y1 | X1, M1)P(X1 | M1)P(M1)
// // The MHS tree is a 2 level tree for time indices (0, 1) with 2 leaves.
// inc.update(gfg, ordering);
// Update without pruning
// The result is a HybridBayesNet with 1 discrete variable M(1).
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
// P(X0 | X1, W1, M1) P(W1|Z1, X1, M1) P(Z1|Y1, X1, M1)
// P(Y1 | X1, M1)P(X1 | M1)P(M1)
// The MHS tree is a 1 level tree for time indices (1,) with 2 leaves.
// TODO(Varun) ClusterTree-inst.h L202 segfaults with custom ordering.
inc.update(gfg);
// /*************** Run Round 3 ***************/
// // Add odometry factor with discrete modes.
// contKeys = {W(1), W(2)};
// still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
// noise_model);
// moving =
// boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry,
// noise_model);
// components = {moving, still};
// dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
// fg.push_back(dcFactor);
/*************** Run Round 3 ***************/
// Add odometry factor with discrete modes.
contKeys = {W(1), W(2)};
still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
fg.push_back(mixtureFactor);
// // Add equivalent of ImuFactor
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0,
// 0),
// poseNoise);
// // PoseFactors-like at k=1
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
// poseNoise);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=1
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
poseNoise);
// initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
// initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
// initial.insert(Z(2), Pose2(2.0, 2.0, 0.0));
// initial.insert(W(2), Pose2(0.0, 3.0, 0.0));
initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
initial.insert(Z(2), Pose2(2.0, 2.0, 0.0));
initial.insert(W(2), Pose2(0.0, 3.0, 0.0));
// // Ordering at k=2. Same intuition as before.
// ordering = Ordering();
// ordering += W(1);
// ordering += Z(1);
// ordering += Y(1);
// ordering += X(1);
// ordering += W(2);
// ordering += Z(2);
// ordering += Y(2);
// ordering += X(2);
// Ordering at k=2. Same intuition as before.
ordering = Ordering();
ordering += W(1);
ordering += Z(1);
ordering += Y(1);
ordering += X(1);
ordering += W(2);
ordering += Z(2);
ordering += Y(2);
ordering += X(2);
// gfg = fg.linearize(initial);
// fg = HybridNonlinearFactorGraph();
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// // Now we prune!
// // P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1,
// M1) P(X0 | X1, W1, M1)
// // P(W1|W2, Z1, X1, M1, M2) P(Z1| W2, Y1, X1, M1,
// M2) P(Y1 | W2, X1, M1, M2)
// // P(X1 | W2, X2, M1, M2) P(W2|Z2, X2, M1, M2)
// P(Z2|Y2, X2, M1, M2)
// // P(Y2 | X2, M1, M2)P(X2 | M1, M2) P(M1, M2)
// // The MHS at this point should be a 3 level tree on (0, 1, 2).
// // 0 has 2 choices, 1 has 4 choices and 2 has 4 choices.
// inc.update(gfg, ordering, 2);
// Now we prune!
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
// P(X0 | X1, W1, M1) P(W1|W2, Z1, X1, M1, M2)
// P(Z1| W2, Y1, X1, M1, M2) P(Y1 | W2, X1, M1, M2)
// P(X1 | W2, X2, M1, M2) P(W2|Z2, X2, M1, M2)
// P(Z2|Y2, X2, M1, M2) P(Y2 | X2, M1, M2)
// P(X2 | M1, M2) P(M1, M2)
// The MHS at this point should be a 2 level tree on (1, 2).
// 1 has 2 choices, and 2 has 4 choices.
inc.update(gfg);
inc.prune(M(2), 2);
// /*************** Run Round 4 ***************/
// // Add odometry factor with discrete modes.
// contKeys = {W(2), W(3)};
// still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
// noise_model);
// moving =
// boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry,
// noise_model);
// components = {moving, still};
// dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
// fg.push_back(dcFactor);
/*************** Run Round 4 ***************/
// Add odometry factor with discrete modes.
contKeys = {W(2), W(3)};
still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
fg.push_back(mixtureFactor);
// // Add equivalent of ImuFactor
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0,
// 0),
// poseNoise);
// // PoseFactors-like at k=3
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
// poseNoise);
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
// poseNoise);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=3
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
poseNoise);
// initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
// initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));
// initial.insert(Z(3), Pose2(3.0, 2.0, 0.0));
// initial.insert(W(3), Pose2(0.0, 3.0, 0.0));
initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));
initial.insert(Z(3), Pose2(3.0, 2.0, 0.0));
initial.insert(W(3), Pose2(0.0, 3.0, 0.0));
// // Ordering at k=3. Same intuition as before.
// ordering = Ordering();
// ordering += W(2);
// ordering += Z(2);
// ordering += Y(2);
// ordering += X(2);
// ordering += W(3);
// ordering += Z(3);
// ordering += Y(3);
// ordering += X(3);
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// gfg = fg.linearize(initial);
// fg = HybridNonlinearFactorGraph();
// Ordering at k=3. Same intuition as before.
ordering = Ordering();
ordering += W(2);
ordering += Z(2);
ordering += Y(2);
ordering += X(2);
ordering += W(3);
ordering += Z(3);
ordering += Y(3);
ordering += X(3);
// // Keep pruning!
// inc.update(gfg, ordering, 3);
// Keep pruning!
inc.update(gfg);
inc.prune(M(3), 3);
inc.print();
// // The final discrete graph should not be empty since we have eliminated
// // all continuous variables.
// EXPECT(!inc.remainingDiscreteGraph().empty());
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.
// EXPECT(!inc.remainingDiscreteGraph().empty());
// // Test if the optimal discrete mode assignment is (1, 1, 1).
// DiscreteValues optimal_assignment =