solving lagoGraph: indeterminant linear system...

release/4.3a0
Luca 2014-05-16 14:43:42 -04:00
parent 3522e6e394
commit 837fa7ac86
1 changed files with 139 additions and 92 deletions

View File

@ -24,6 +24,7 @@
#include <gtsam/geometry/Pose2.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
@ -55,6 +56,7 @@ Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
static const double PI = boost::math::constants::pi<double>();
#include <gtsam/inference/graph.h>
/**
* @brief Initialization technique for planar pose SLAM using
* LAGO (Linear Approximation for Graph Optimization). see papers:
@ -69,57 +71,6 @@ static const double PI = boost::math::constants::pi<double>();
* @return Values: initial guess including orientation estimate from LAGO
*/
/* ************************************************************************* */
//
#include <gtsam/inference/graph.h>
Values initializeLago(const NonlinearFactorGraph& graph) {
// Find a minimum spanning tree
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(graph);
// Order measurements: ordered spanning path first, loop closure later
// Extract angles in so2 from relative rotations in SO2
// Correct orientations along loops
// Create a linear factor graph (LFG) of scalars
// Solve the LFG
// Store solution of the LFG in values
Values estimateLago;
return estimateLago;
}
namespace simple {
// We consider a small graph:
// symbolic FG
// x2 0 1
// / | \ 1 2
// / | \ 2 3
// x3 | x1 2 0
// \ | / 0 3
// \ | /
// x0
//
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
NonlinearFactorGraph graph() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
return g;
}
}
/*
* This function computes the cumulative orientation (without wrapping)
* from each node to the root (root has zero orientation)
@ -134,13 +85,10 @@ double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
// We check if we reached the root
if(tree[key_child]==key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap[key_child];
// we get the parent
key_parent = tree[key_child]; // the parent
// we check if we connected to some part of the tree we know
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
nodeTheta += thetaFromRootMap[key_parent];
@ -153,10 +101,8 @@ double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree,
vector<size_t>& chords, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
// Get keys for which you want the orientation
size_t id=0;
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
if (factor->keys().size() == 2){
@ -206,6 +152,126 @@ map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>
return thetaToRootMap;
}
/*
* Linear factor graph with regularized orientation measurements
*/
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot){
GaussianFactorGraph lagoGraph;
Matrix I = eye(1);
BOOST_FOREACH(const size_t& factorId, spanningTree){ // put original measurements in the spanning tree
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (ST)!");
Vector deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (ST)!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
}
BOOST_FOREACH(const size_t& factorId, chords){ // put regularized measurements in the chords
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor (chords)!");
double key1_DeltaTheta_key2 = pose2Between->measured().theta();
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot[key1] - orientationsToRoot[key2]; // this coincides to summing up measurements along the cycle induced by the chord
double k = round(k2pi_noise/(2*PI));
Vector deltaTheta = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model (chords)!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
noiseModel::Diagonal::shared_ptr model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
}
return lagoGraph;
}
/* ************************************************************************* */
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
// Find a minimum spanning tree
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(graph);
// Create a linear factor graph (LFG) of scalars
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, graph);
// temporary structure to correct wraparounds along loops
map<Key, double> orientationsToRoot = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, graph, orientationsToRoot);
lagoGraph.print("lagoGraph");
// Solve the LFG
VectorValues estimateLago = lagoGraph.optimize();
return estimateLago;
}
namespace simple {
// We consider a small graph:
// symbolic FG
// x2 0 1
// / | \ 1 2
// / | \ 2 3
// x3 | x1 2 0
// \ | / 0 3
// \ | /
// x0
//
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
NonlinearFactorGraph graph() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
return g;
}
}
/* *************************************************************************** */
TEST( Lago, checkSTandChords ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
DOUBLES_EQUAL(spanningTree[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
DOUBLES_EQUAL(spanningTree[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
DOUBLES_EQUAL(spanningTree[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
}
/* *************************************************************************** */
TEST( Lago, orientationsOverSpanningTree ) {
NonlinearFactorGraph g = simple::graph();
@ -238,26 +304,6 @@ TEST( Lago, orientationsOverSpanningTree ) {
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
}
/*
* Linear factor graph with regularized orientation measurements
*/
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot){
GaussianFactorGraph lagoGraph;
BOOST_FOREACH(const size_t& factorId, spanningTree){ // put original measurements in the spanning tree
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(g[factorId]);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor!");;
double deltaTheta = pose2Between->measured().theta();
//SharedNoiseModel model = g[factorId]->get_noiseModel()
//lagoGraph.add(JacobianFactor(key1, -1, key2, 1, deltaTheta, model));
}
return lagoGraph;
}
/* *************************************************************************** */
TEST( Lago, regularizedMeasurements ) {
NonlinearFactorGraph g = simple::graph();
@ -274,27 +320,28 @@ TEST( Lago, regularizedMeasurements ) {
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, g, orientationsToRoot);
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
Vector actual = actualAb.second;
Vector actual = 0.1 * actualAb.second; // this is the whitened error, so we multiply by the std to unwhiten
// This respects the order of the factors in the original graph
Vector expected = (Vector(5) << 1.570796326794897, 1.570796326794897, 1.570796326794897, -3.141592653589793, 4.712388980384690 );
// This arranges the spanning tree first and chords later
Vector orderedExpected = (Vector(5) << expected[spanningTree[0]], expected[spanningTree[1]], expected[spanningTree[2]],
expected[chords[0]], expected[chords[1]] );
// Expected regularized measurements (same for the spanning tree, corrected for the chords)
Vector expected = (Vector(5) << PI/2, PI, -PI/2, PI/2 - 2*PI , PI/2);
EXPECT(assert_equal(orderedExpected, actual, 1e-6));
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* *************************************************************************** */
//TEST( Lago, smallGraph_GTmeasurements ) {
//
// Values initialGuessLago = initializeLago(simple::graph());
//
// DOUBLES_EQUAL(0.0, (initialGuessLago.at<Pose2>(x0)).theta(), 1e-6);
// DOUBLES_EQUAL(0.5 * PI, (initialGuessLago.at<Pose2>(x1)).theta(), 1e-6);
// DOUBLES_EQUAL(PI, (initialGuessLago.at<Pose2>(x2)).theta(), 1e-6);
// DOUBLES_EQUAL(1.5 * PI, (initialGuessLago.at<Pose2>(x3)).theta(), 1e-6);
//}
TEST( Lago, smallGraph_GTmeasurements ) {
VectorValues initialGuessLago = initializeLago(simple::graph());
initialGuessLago.print("");
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
// DOUBLES_EQUAL(0.0, (initialGuessLago.at<Pose2>(x0)).theta(), 1e-6);
// DOUBLES_EQUAL(0.5 * PI, (initialGuessLago.at<Pose2>(x1)).theta(), 1e-6);
// DOUBLES_EQUAL(PI, (initialGuessLago.at<Pose2>(x2)).theta(), 1e-6);
// DOUBLES_EQUAL(1.5 * PI, (initialGuessLago.at<Pose2>(x3)).theta(), 1e-6);
}
/* ************************************************************************* */
int main() {