First Iteration of Shortcut Cache changes and misc const fixes
parent
94a769a447
commit
835d1d6b50
|
@ -557,10 +557,27 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class CLIQUE>
|
||||
template<class CONTAINER>
|
||||
void BayesTree<CONDITIONAL,CLIQUE>::removeTop(const CONTAINER& keys,
|
||||
void BayesTree<CONDITIONAL, CLIQUE>::deleteCachedShorcuts(const sharedClique& subtree) {
|
||||
// Check if subtree exists
|
||||
if (subtree) {
|
||||
//Delete CachedShortcut for this clique
|
||||
subtree->resetCachedShortcut();
|
||||
// Recursive call over all child cliques
|
||||
BOOST_FOREACH(sharedClique& childClique, subtree->children()) {
|
||||
deleteCachedShorcuts(childClique);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class CLIQUE>
|
||||
template<class CONTAINER>
|
||||
void BayesTree<CONDITIONAL,CLIQUE>::removeTop(const CONTAINER& keys,
|
||||
BayesNet<CONDITIONAL>& bn, typename BayesTree<CONDITIONAL,CLIQUE>::Cliques& orphans) {
|
||||
|
||||
//TODO: Improve this
|
||||
deleteCachedShorcuts(this->root_);
|
||||
|
||||
// process each key of the new factor
|
||||
BOOST_FOREACH(const Index& key, keys) {
|
||||
|
||||
|
|
|
@ -280,6 +280,12 @@ namespace gtsam {
|
|||
sharedClique insert(const sharedConditional& clique,
|
||||
std::list<sharedClique>& children, bool isRootClique = false);
|
||||
|
||||
/**
|
||||
* This deletes the cached shortcuts of all cliques in a subtree. This is
|
||||
* performed when the bayes tree is modified.
|
||||
*/
|
||||
void deleteCachedShorcuts(const sharedClique& subtree);
|
||||
|
||||
private:
|
||||
|
||||
/** deep copy to another tree */
|
||||
|
|
|
@ -102,103 +102,113 @@ namespace gtsam {
|
|||
return changed;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// The shortcut density is a conditional P(S|R) of the separator of this
|
||||
// clique on the root. We can compute it recursively from the parent shortcut
|
||||
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
||||
/* ************************************************************************* */
|
||||
template<class DERIVED, class CONDITIONAL>
|
||||
BayesNet<CONDITIONAL> BayesTreeCliqueBase<DERIVED,CONDITIONAL>::shortcut(derived_ptr R, Eliminate function) {
|
||||
/* ************************************************************************* */
|
||||
// The shortcut density is a conditional P(S|R) of the separator of this
|
||||
// clique on the root. We can compute it recursively from the parent shortcut
|
||||
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
||||
/* ************************************************************************* */
|
||||
template<class DERIVED, class CONDITIONAL>
|
||||
BayesNet<CONDITIONAL> BayesTreeCliqueBase<DERIVED, CONDITIONAL>::shortcut(
|
||||
derived_ptr R, Eliminate function) const{
|
||||
|
||||
static const bool debug = false;
|
||||
static const bool debug = false;
|
||||
|
||||
// A first base case is when this clique or its parent is the root,
|
||||
// in which case we return an empty Bayes net.
|
||||
BayesNet<ConditionalType> p_S_R; //shortcut P(S|R)
|
||||
|
||||
derived_ptr parent(parent_.lock());
|
||||
//Check if the ShortCut already exists
|
||||
if(!cachedShortcut_){
|
||||
|
||||
if (R.get()==this || parent==R) {
|
||||
BayesNet<ConditionalType> empty;
|
||||
return empty;
|
||||
}
|
||||
// A first base case is when this clique or its parent is the root,
|
||||
// in which case we return an empty Bayes net.
|
||||
|
||||
// The root conditional
|
||||
FactorGraph<FactorType> p_R(BayesNet<ConditionalType>(R->conditional()));
|
||||
derived_ptr parent(parent_.lock());
|
||||
|
||||
// The parent clique has a ConditionalType for each frontal node in Fp
|
||||
// so we can obtain P(Fp|Sp) in factor graph form
|
||||
FactorGraph<FactorType> p_Fp_Sp(BayesNet<ConditionalType>(parent->conditional()));
|
||||
if (R.get() == this || parent == R) {
|
||||
BayesNet<ConditionalType> empty;
|
||||
return empty;
|
||||
}
|
||||
|
||||
// If not the base case, obtain the parent shortcut P(Sp|R) as factors
|
||||
FactorGraph<FactorType> p_Sp_R(parent->shortcut(R, function));
|
||||
// The root conditional
|
||||
FactorGraph<FactorType> p_R(BayesNet<ConditionalType>(R->conditional()));
|
||||
|
||||
// now combine P(Cp|R) = P(Fp|Sp) * P(Sp|R)
|
||||
FactorGraph<FactorType> p_Cp_R;
|
||||
p_Cp_R.push_back(p_R);
|
||||
p_Cp_R.push_back(p_Fp_Sp);
|
||||
p_Cp_R.push_back(p_Sp_R);
|
||||
// The parent clique has a ConditionalType for each frontal node in Fp
|
||||
// so we can obtain P(Fp|Sp) in factor graph form
|
||||
FactorGraph<FactorType> p_Fp_Sp(BayesNet<ConditionalType>(parent->conditional()));
|
||||
|
||||
// Eliminate into a Bayes net with ordering designed to integrate out
|
||||
// any variables not in *our* separator. Variables to integrate out must be
|
||||
// eliminated first hence the desired ordering is [Cp\S S].
|
||||
// However, an added wrinkle is that Cp might overlap with the root.
|
||||
// Keys corresponding to the root should not be added to the ordering at all.
|
||||
// If not the base case, obtain the parent shortcut P(Sp|R) as factors
|
||||
FactorGraph<FactorType> p_Sp_R(parent->shortcut(R, function));
|
||||
|
||||
if(debug) {
|
||||
p_R.print("p_R: ");
|
||||
p_Fp_Sp.print("p_Fp_Sp: ");
|
||||
p_Sp_R.print("p_Sp_R: ");
|
||||
}
|
||||
// now combine P(Cp|R) = P(Fp|Sp) * P(Sp|R)
|
||||
FactorGraph<FactorType> p_Cp_R;
|
||||
p_Cp_R.push_back(p_R);
|
||||
p_Cp_R.push_back(p_Fp_Sp);
|
||||
p_Cp_R.push_back(p_Sp_R);
|
||||
|
||||
// We want to factor into a conditional of the clique variables given the
|
||||
// root and the marginal on the root, integrating out all other variables.
|
||||
// The integrands include any parents of this clique and the variables of
|
||||
// the parent clique.
|
||||
FastSet<Index> variablesAtBack;
|
||||
FastSet<Index> separator;
|
||||
size_t uniqueRootVariables = 0;
|
||||
BOOST_FOREACH(const Index separatorIndex, this->conditional()->parents()) {
|
||||
variablesAtBack.insert(separatorIndex);
|
||||
separator.insert(separatorIndex);
|
||||
if(debug) std::cout << "At back (this): " << separatorIndex << std::endl;
|
||||
}
|
||||
BOOST_FOREACH(const Index key, R->conditional()->keys()) {
|
||||
if(variablesAtBack.insert(key).second)
|
||||
++ uniqueRootVariables;
|
||||
if(debug) std::cout << "At back (root): " << key << std::endl;
|
||||
}
|
||||
// Eliminate into a Bayes net with ordering designed to integrate out
|
||||
// any variables not in *our* separator. Variables to integrate out must be
|
||||
// eliminated first hence the desired ordering is [Cp\S S].
|
||||
// However, an added wrinkle is that Cp might overlap with the root.
|
||||
// Keys corresponding to the root should not be added to the ordering at all.
|
||||
|
||||
Permutation toBack = Permutation::PushToBack(
|
||||
std::vector<Index>(variablesAtBack.begin(), variablesAtBack.end()),
|
||||
R->conditional()->lastFrontalKey() + 1);
|
||||
Permutation::shared_ptr toBackInverse(toBack.inverse());
|
||||
BOOST_FOREACH(const typename FactorType::shared_ptr& factor, p_Cp_R) {
|
||||
factor->permuteWithInverse(*toBackInverse); }
|
||||
typename BayesNet<ConditionalType>::shared_ptr eliminated(EliminationTree<
|
||||
FactorType>::Create(p_Cp_R)->eliminate(function));
|
||||
if(debug) {
|
||||
p_R.print("p_R: ");
|
||||
p_Fp_Sp.print("p_Fp_Sp: ");
|
||||
p_Sp_R.print("p_Sp_R: ");
|
||||
}
|
||||
|
||||
// Take only the conditionals for p(S|R). We check for each variable being
|
||||
// in the separator set because if some separator variables overlap with
|
||||
// root variables, we cannot rely on the number of root variables, and also
|
||||
// want to include those variables in the conditional.
|
||||
BayesNet<ConditionalType> p_S_R;
|
||||
BOOST_REVERSE_FOREACH(typename ConditionalType::shared_ptr conditional, *eliminated) {
|
||||
assert(conditional->nrFrontals() == 1);
|
||||
if(separator.find(toBack[conditional->firstFrontalKey()]) != separator.end()) {
|
||||
if(debug)
|
||||
conditional->print("Taking C|R conditional: ");
|
||||
p_S_R.push_front(conditional);
|
||||
}
|
||||
if(p_S_R.size() == separator.size())
|
||||
break;
|
||||
}
|
||||
// We want to factor into a conditional of the clique variables given the
|
||||
// root and the marginal on the root, integrating out all other variables.
|
||||
// The integrands include any parents of this clique and the variables of
|
||||
// the parent clique.
|
||||
FastSet<Index> variablesAtBack;
|
||||
FastSet<Index> separator;
|
||||
size_t uniqueRootVariables = 0;
|
||||
BOOST_FOREACH(const Index separatorIndex, this->conditional()->parents()) {
|
||||
variablesAtBack.insert(separatorIndex);
|
||||
separator.insert(separatorIndex);
|
||||
if(debug) std::cout << "At back (this): " << separatorIndex << std::endl;
|
||||
}
|
||||
BOOST_FOREACH(const Index key, R->conditional()->keys()) {
|
||||
if(variablesAtBack.insert(key).second)
|
||||
++ uniqueRootVariables;
|
||||
if(debug) std::cout << "At back (root): " << key << std::endl;
|
||||
}
|
||||
|
||||
// Undo the permutation
|
||||
if(debug) toBack.print("toBack: ");
|
||||
p_S_R.permuteWithInverse(toBack);
|
||||
Permutation toBack = Permutation::PushToBack(
|
||||
std::vector<Index>(variablesAtBack.begin(), variablesAtBack.end()),
|
||||
R->conditional()->lastFrontalKey() + 1);
|
||||
Permutation::shared_ptr toBackInverse(toBack.inverse());
|
||||
BOOST_FOREACH(const typename FactorType::shared_ptr& factor, p_Cp_R) {
|
||||
factor->permuteWithInverse(*toBackInverse); }
|
||||
typename BayesNet<ConditionalType>::shared_ptr eliminated(EliminationTree<
|
||||
FactorType>::Create(p_Cp_R)->eliminate(function));
|
||||
|
||||
// return the parent shortcut P(Sp|R)
|
||||
assertInvariants();
|
||||
// Take only the conditionals for p(S|R). We check for each variable being
|
||||
// in the separator set because if some separator variables overlap with
|
||||
// root variables, we cannot rely on the number of root variables, and also
|
||||
// want to include those variables in the conditional.
|
||||
BOOST_REVERSE_FOREACH(typename ConditionalType::shared_ptr conditional, *eliminated) {
|
||||
assert(conditional->nrFrontals() == 1);
|
||||
if(separator.find(toBack[conditional->firstFrontalKey()]) != separator.end()) {
|
||||
if(debug)
|
||||
conditional->print("Taking C|R conditional: ");
|
||||
p_S_R.push_front(conditional);
|
||||
}
|
||||
if(p_S_R.size() == separator.size())
|
||||
break;
|
||||
}
|
||||
|
||||
// Undo the permutation
|
||||
if(debug) toBack.print("toBack: ");
|
||||
p_S_R.permuteWithInverse(toBack);
|
||||
|
||||
assertInvariants();
|
||||
cachedShortcut_ = p_S_R;
|
||||
}
|
||||
else
|
||||
p_S_R = *cachedShortcut_;
|
||||
|
||||
// return the shortcut P(S|R)
|
||||
return p_S_R;
|
||||
}
|
||||
|
||||
|
@ -210,7 +220,7 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
template<class DERIVED, class CONDITIONAL>
|
||||
FactorGraph<typename BayesTreeCliqueBase<DERIVED,CONDITIONAL>::FactorType> BayesTreeCliqueBase<DERIVED,CONDITIONAL>::marginal(
|
||||
derived_ptr R, Eliminate function) {
|
||||
derived_ptr R, Eliminate function) const{
|
||||
// If we are the root, just return this root
|
||||
// NOTE: immediately cast to a factor graph
|
||||
BayesNet<ConditionalType> bn(R->conditional());
|
||||
|
@ -231,7 +241,7 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
template<class DERIVED, class CONDITIONAL>
|
||||
FactorGraph<typename BayesTreeCliqueBase<DERIVED,CONDITIONAL>::FactorType> BayesTreeCliqueBase<DERIVED,CONDITIONAL>::joint(
|
||||
derived_ptr C2, derived_ptr R, Eliminate function) {
|
||||
derived_ptr C2, derived_ptr R, Eliminate function) const {
|
||||
// For now, assume neither is the root
|
||||
|
||||
// Combine P(F1|S1), P(S1|R), P(F2|S2), P(S2|R), and P(R)
|
||||
|
|
|
@ -80,6 +80,9 @@ namespace gtsam {
|
|||
derived_weak_ptr parent_;
|
||||
std::list<derived_ptr> children_;
|
||||
|
||||
/// This stores the Cached Shortcut value
|
||||
mutable boost::optional<BayesNet<ConditionalType> > cachedShortcut_;
|
||||
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
|
@ -150,14 +153,13 @@ namespace gtsam {
|
|||
bool permuteSeparatorWithInverse(const Permutation& inversePermutation);
|
||||
|
||||
/** return the conditional P(S|Root) on the separator given the root */
|
||||
// TODO: create a cached version
|
||||
BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function);
|
||||
BayesNet<ConditionalType> shortcut(derived_ptr root, Eliminate function) const;
|
||||
|
||||
/** return the marginal P(C) of the clique */
|
||||
FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function);
|
||||
FactorGraph<FactorType> marginal(derived_ptr root, Eliminate function) const;
|
||||
|
||||
/** return the joint P(C1,C2), where C1==this. TODO: not a method? */
|
||||
FactorGraph<FactorType> joint(derived_ptr C2, derived_ptr root, Eliminate function);
|
||||
FactorGraph<FactorType> joint(derived_ptr C2, derived_ptr root, Eliminate function) const;
|
||||
|
||||
friend class BayesTree<ConditionalType, DerivedType>;
|
||||
|
||||
|
@ -166,6 +168,9 @@ namespace gtsam {
|
|||
///TODO: comment
|
||||
void assertInvariants() const;
|
||||
|
||||
/// Reset the computed shortcut of this clique. Used by friend BayesTree
|
||||
void resetCachedShortcut() { cachedShortcut_ = boost::none; }
|
||||
|
||||
private:
|
||||
|
||||
/** Cliques cannot be copied except by the clone() method, which does not
|
||||
|
|
Loading…
Reference in New Issue