Merge pull request #1985 from borglab/hbn-tests
commit
8327812d29
|
@ -499,6 +499,40 @@ void DiscreteConditional::prune(size_t maxNrAssignments) {
|
|||
this->root_ = pruned.root_;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
void DiscreteConditional::removeDiscreteModes(const DiscreteValues& given) {
|
||||
AlgebraicDecisionTree<Key> tree(*this);
|
||||
for (auto [key, value] : given) {
|
||||
tree = tree.choose(key, value);
|
||||
}
|
||||
|
||||
// Get the leftover DiscreteKey frontals
|
||||
DiscreteKeys frontals;
|
||||
std::for_each(this->frontals().begin(), this->frontals().end(), [&](Key key) {
|
||||
// Check if frontal key exists in given, if not add to new frontals
|
||||
if (given.count(key) == 0) {
|
||||
frontals.emplace_back(key, this->cardinalities_.at(key));
|
||||
}
|
||||
});
|
||||
// Get the leftover DiscreteKey parents
|
||||
DiscreteKeys parents;
|
||||
std::for_each(this->parents().begin(), this->parents().end(), [&](Key key) {
|
||||
// Check if parent key exists in given, if not add to new parents
|
||||
if (given.count(key) == 0) {
|
||||
parents.emplace_back(key, this->cardinalities_.at(key));
|
||||
}
|
||||
});
|
||||
|
||||
DiscreteKeys allDkeys(frontals);
|
||||
allDkeys.insert(allDkeys.end(), parents.begin(), parents.end());
|
||||
|
||||
// Update the conditional
|
||||
this->keys_ = allDkeys.indices();
|
||||
this->cardinalities_ = allDkeys.cardinalities();
|
||||
this->root_ = tree.root_;
|
||||
this->nrFrontals_ = frontals.size();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double DiscreteConditional::negLogConstant() const { return 0.0; }
|
||||
|
||||
|
|
|
@ -279,6 +279,16 @@ class GTSAM_EXPORT DiscreteConditional
|
|||
/// Prune the conditional
|
||||
virtual void prune(size_t maxNrAssignments);
|
||||
|
||||
/**
|
||||
* @brief Remove the discrete modes whose assignments are given to us.
|
||||
* Only applies to discrete conditionals.
|
||||
*
|
||||
* Imperative method so we can update nodes in the Bayes net or Bayes tree.
|
||||
*
|
||||
* @param given The discrete modes whose assignments we know.
|
||||
*/
|
||||
void removeDiscreteModes(const DiscreteValues& given);
|
||||
|
||||
/// @}
|
||||
|
||||
protected:
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteConditional.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||
#include <gtsam/discrete/TableDistribution.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
|
@ -46,7 +47,8 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
|
|||
// TODO(Frank): This can be quite expensive *unless* the factors have already
|
||||
// been pruned before. Another, possibly faster approach is branch and bound
|
||||
// search to find the K-best leaves and then create a single pruned conditional.
|
||||
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
|
||||
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves,
|
||||
bool removeDeadModes) const {
|
||||
// Collect all the discrete conditionals. Could be small if already pruned.
|
||||
const DiscreteBayesNet marginal = discreteMarginal();
|
||||
|
||||
|
@ -66,6 +68,30 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
|
|||
// we can prune HybridGaussianConditionals.
|
||||
DiscreteConditional pruned = *result.back()->asDiscrete();
|
||||
|
||||
DiscreteValues deadModesValues;
|
||||
if (removeDeadModes) {
|
||||
DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
|
||||
for (auto dkey : pruned.discreteKeys()) {
|
||||
Vector probabilities = marginals.marginalProbabilities(dkey);
|
||||
|
||||
int index = -1;
|
||||
auto threshold = (probabilities.array() > 0.99);
|
||||
// If atleast 1 value is non-zero, then we can find the index
|
||||
// Else if all are zero, index would be set to 0 which is incorrect
|
||||
if (!threshold.isZero()) {
|
||||
threshold.maxCoeff(&index);
|
||||
}
|
||||
|
||||
if (index >= 0) {
|
||||
deadModesValues.emplace(dkey.first, index);
|
||||
}
|
||||
}
|
||||
|
||||
// Remove the modes (imperative)
|
||||
result.back()->asDiscrete()->removeDiscreteModes(deadModesValues);
|
||||
pruned = *result.back()->asDiscrete();
|
||||
}
|
||||
|
||||
/* To prune, we visitWith every leaf in the HybridGaussianConditional.
|
||||
* For each leaf, using the assignment we can check the discrete decision tree
|
||||
* for 0.0 probability, then just set the leaf to a nullptr.
|
||||
|
@ -80,8 +106,28 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
|
|||
// Prune the hybrid Gaussian conditional!
|
||||
auto prunedHybridGaussianConditional = hgc->prune(pruned);
|
||||
|
||||
// Type-erase and add to the pruned Bayes Net fragment.
|
||||
result.push_back(prunedHybridGaussianConditional);
|
||||
if (removeDeadModes) {
|
||||
KeyVector deadKeys, conditionalDiscreteKeys;
|
||||
for (const auto &kv : deadModesValues) {
|
||||
deadKeys.push_back(kv.first);
|
||||
}
|
||||
for (auto dkey : prunedHybridGaussianConditional->discreteKeys()) {
|
||||
conditionalDiscreteKeys.push_back(dkey.first);
|
||||
}
|
||||
// The discrete keys in the conditional are the same as the keys in the
|
||||
// dead modes, then we just get the corresponding Gaussian conditional.
|
||||
if (deadKeys == conditionalDiscreteKeys) {
|
||||
result.push_back(
|
||||
prunedHybridGaussianConditional->choose(deadModesValues));
|
||||
} else {
|
||||
// Add as-is
|
||||
result.push_back(prunedHybridGaussianConditional);
|
||||
}
|
||||
} else {
|
||||
// Type-erase and add to the pruned Bayes Net fragment.
|
||||
result.push_back(prunedHybridGaussianConditional);
|
||||
}
|
||||
|
||||
} else if (auto gc = conditional->asGaussian()) {
|
||||
// Add the non-HybridGaussianConditional conditional
|
||||
result.push_back(gc);
|
||||
|
|
|
@ -217,9 +217,11 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
* @brief Prune the Bayes Net such that we have at most maxNrLeaves leaves.
|
||||
*
|
||||
* @param maxNrLeaves Continuous values at which to compute the error.
|
||||
* @param removeDeadModes Flag to enable removal of modes which only have a
|
||||
* single possible assignment.
|
||||
* @return A pruned HybridBayesNet
|
||||
*/
|
||||
HybridBayesNet prune(size_t maxNrLeaves) const;
|
||||
HybridBayesNet prune(size_t maxNrLeaves, bool removeDeadModes = false) const;
|
||||
|
||||
/**
|
||||
* @brief Error method using HybridValues which returns specific error for
|
||||
|
|
|
@ -247,7 +247,7 @@ continuousElimination(const HybridGaussianFactorGraph &factors,
|
|||
* @param errors DecisionTree of (unnormalized) errors.
|
||||
* @return TableFactor::shared_ptr
|
||||
*/
|
||||
static TableFactor::shared_ptr DiscreteFactorFromErrors(
|
||||
static DiscreteFactor::shared_ptr DiscreteFactorFromErrors(
|
||||
const DiscreteKeys &discreteKeys,
|
||||
const AlgebraicDecisionTree<Key> &errors) {
|
||||
double min_log = errors.min();
|
||||
|
|
|
@ -343,11 +343,20 @@ TEST(HybridBayesNet, Optimize) {
|
|||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net error
|
||||
TEST(HybridBayesNet, Pruning) {
|
||||
// Create switching network with three continuous variables and two discrete:
|
||||
// ϕ(x0) ϕ(x0,x1,m0) ϕ(x1,x2,m1) ϕ(x0;z0) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0) ϕ(m0,m1)
|
||||
Switching s(3);
|
||||
namespace hbn_error {
|
||||
// Create switching network with three continuous variables and two discrete:
|
||||
// ϕ(x0) ϕ(x0,x1,m0) ϕ(x1,x2,m1) ϕ(x0;z0) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0) ϕ(m0,m1)
|
||||
Switching s(3);
|
||||
|
||||
// The true discrete assignment
|
||||
const DiscreteValues discrete_values{{M(0), 1}, {M(1), 1}};
|
||||
|
||||
} // namespace hbn_error
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net error and log-probability
|
||||
TEST(HybridBayesNet, Error) {
|
||||
using namespace hbn_error;
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
s.linearizedFactorGraph().eliminateSequential();
|
||||
|
@ -366,7 +375,6 @@ TEST(HybridBayesNet, Pruning) {
|
|||
EXPECT(assert_equal(expected, discretePosterior, 1e-6));
|
||||
|
||||
// Verify logProbability computation and check specific logProbability value
|
||||
const DiscreteValues discrete_values{{M(0), 1}, {M(1), 1}};
|
||||
const HybridValues hybridValues{delta.continuous(), discrete_values};
|
||||
double logProbability = 0;
|
||||
logProbability += posterior->at(0)->asHybrid()->logProbability(hybridValues);
|
||||
|
@ -390,17 +398,84 @@ TEST(HybridBayesNet, Pruning) {
|
|||
// Check agreement with discrete posterior
|
||||
double density = exp(logProbability + negLogConstant) / normalizer;
|
||||
EXPECT_DOUBLES_EQUAL(density, discretePosterior(discrete_values), 1e-6);
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net pruning
|
||||
TEST(HybridBayesNet, Prune) {
|
||||
Switching s(3);
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
s.linearizedFactorGraph().eliminateSequential();
|
||||
EXPECT_LONGS_EQUAL(5, posterior->size());
|
||||
|
||||
// Call Max-Product to get MAP
|
||||
HybridValues delta = posterior->optimize();
|
||||
|
||||
// Prune the Bayes net
|
||||
auto prunedBayesNet = posterior->prune(2);
|
||||
|
||||
// Test if Max-Product gives the same result as unpruned version
|
||||
HybridValues pruned_delta = prunedBayesNet.optimize();
|
||||
EXPECT(assert_equal(delta.discrete(), pruned_delta.discrete()));
|
||||
EXPECT(assert_equal(delta.continuous(), pruned_delta.continuous()));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net pruning and dead node removal
|
||||
TEST(HybridBayesNet, RemoveDeadNodes) {
|
||||
Switching s(3);
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
s.linearizedFactorGraph().eliminateSequential();
|
||||
EXPECT_LONGS_EQUAL(5, posterior->size());
|
||||
|
||||
// Call Max-Product to get MAP
|
||||
HybridValues delta = posterior->optimize();
|
||||
|
||||
// Prune the Bayes net
|
||||
const bool pruneDeadVariables = true;
|
||||
auto prunedBayesNet = posterior->prune(2, pruneDeadVariables);
|
||||
|
||||
// Check that discrete joint only has M0 and not (M0, M1)
|
||||
// since M0 is removed
|
||||
KeyVector actual_keys = prunedBayesNet.at(0)->asDiscrete()->keys();
|
||||
EXPECT(KeyVector{M(0)} == actual_keys);
|
||||
|
||||
// Check that hybrid conditionals that only depend on M1
|
||||
// are now Gaussian and not Hybrid
|
||||
EXPECT(prunedBayesNet.at(0)->isDiscrete());
|
||||
EXPECT(prunedBayesNet.at(1)->isHybrid());
|
||||
// Only P(X2 | X1, M1) depends on M1,
|
||||
// so it gets convert to a Gaussian P(X2 | X1)
|
||||
EXPECT(prunedBayesNet.at(2)->isContinuous());
|
||||
EXPECT(prunedBayesNet.at(3)->isHybrid());
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net error and log-probability after pruning
|
||||
TEST(HybridBayesNet, ErrorAfterPruning) {
|
||||
using namespace hbn_error;
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
s.linearizedFactorGraph().eliminateSequential();
|
||||
EXPECT_LONGS_EQUAL(5, posterior->size());
|
||||
|
||||
// Optimize
|
||||
HybridValues delta = posterior->optimize();
|
||||
|
||||
// Prune and get probabilities
|
||||
auto prunedBayesNet = posterior->prune(2);
|
||||
auto prunedTree = prunedBayesNet.discretePosterior(delta.continuous());
|
||||
HybridBayesNet prunedBayesNet = posterior->prune(2);
|
||||
AlgebraicDecisionTree<Key> prunedTree =
|
||||
prunedBayesNet.discretePosterior(delta.continuous());
|
||||
|
||||
// Regression test on pruned logProbability tree
|
||||
// Regression test on pruned probability tree
|
||||
std::vector<double> pruned_leaves = {0.0, 0.50758422, 0.0, 0.49241578};
|
||||
AlgebraicDecisionTree<Key> expected_pruned(s.modes, pruned_leaves);
|
||||
EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
|
||||
|
||||
// Regression
|
||||
// Regression to check specific logProbability value
|
||||
const HybridValues hybridValues{delta.continuous(), discrete_values};
|
||||
double pruned_logProbability = 0;
|
||||
pruned_logProbability +=
|
||||
prunedBayesNet.at(0)->asDiscrete()->logProbability(hybridValues);
|
||||
|
@ -423,24 +498,6 @@ TEST(HybridBayesNet, Pruning) {
|
|||
EXPECT_DOUBLES_EQUAL(pruned_density, prunedTree(discrete_values), 1e-9);
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net pruning
|
||||
TEST(HybridBayesNet, Prune) {
|
||||
Switching s(4);
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
s.linearizedFactorGraph().eliminateSequential();
|
||||
EXPECT_LONGS_EQUAL(7, posterior->size());
|
||||
|
||||
HybridValues delta = posterior->optimize();
|
||||
|
||||
auto prunedBayesNet = posterior->prune(2);
|
||||
HybridValues pruned_delta = prunedBayesNet.optimize();
|
||||
|
||||
EXPECT(assert_equal(delta.discrete(), pruned_delta.discrete()));
|
||||
EXPECT(assert_equal(delta.continuous(), pruned_delta.continuous()));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net updateDiscreteConditionals
|
||||
TEST(HybridBayesNet, UpdateDiscreteConditionals) {
|
||||
|
|
|
@ -115,103 +115,6 @@ TEST(HybridEstimation, Full) {
|
|||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, IncrementalSmoother) {
|
||||
using namespace estimation_fixture;
|
||||
|
||||
size_t K = 15;
|
||||
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
Switching switching = InitializeEstimationProblem(K, 1.0, 0.1, measurements,
|
||||
"1/1 1/1", graph, initial);
|
||||
HybridSmoother smoother;
|
||||
|
||||
HybridGaussianFactorGraph linearized;
|
||||
|
||||
constexpr size_t maxNrLeaves = 3;
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
|
||||
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
|
||||
graph.push_back(switching.unaryFactors.at(k)); // Measurement
|
||||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
linearized = *graph.linearize(initial);
|
||||
Ordering ordering = smoother.getOrdering(linearized);
|
||||
|
||||
smoother.update(linearized, maxNrLeaves, ordering);
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
Values result = initial.retract(delta.continuous());
|
||||
|
||||
DiscreteValues expected_discrete;
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
expected_discrete[M(k)] = discrete_seq[k];
|
||||
}
|
||||
EXPECT(assert_equal(expected_discrete, delta.discrete()));
|
||||
|
||||
Values expected_continuous;
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
expected_continuous.insert(X(k), measurements[k]);
|
||||
}
|
||||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test if pruned factor is set to correct error and no errors are thrown.
|
||||
TEST(HybridEstimation, ValidPruningError) {
|
||||
using namespace estimation_fixture;
|
||||
|
||||
size_t K = 8;
|
||||
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
Switching switching = InitializeEstimationProblem(K, 1e-2, 1e-3, measurements,
|
||||
"1/1 1/1", graph, initial);
|
||||
HybridSmoother smoother;
|
||||
|
||||
HybridGaussianFactorGraph linearized;
|
||||
|
||||
constexpr size_t maxNrLeaves = 3;
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
|
||||
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
|
||||
graph.push_back(switching.unaryFactors.at(k)); // Measurement
|
||||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
linearized = *graph.linearize(initial);
|
||||
Ordering ordering = smoother.getOrdering(linearized);
|
||||
|
||||
smoother.update(linearized, maxNrLeaves, ordering);
|
||||
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
Values result = initial.retract(delta.continuous());
|
||||
|
||||
DiscreteValues expected_discrete;
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
expected_discrete[M(k)] = discrete_seq[k];
|
||||
}
|
||||
EXPECT(assert_equal(expected_discrete, delta.discrete()));
|
||||
|
||||
Values expected_continuous;
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
expected_continuous.insert(X(k), measurements[k]);
|
||||
}
|
||||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, ISAM) {
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridSmoother.cpp
|
||||
* @brief Unit tests for HybridSmoother
|
||||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearISAM.h>
|
||||
#include <gtsam/hybrid/HybridSmoother.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
namespace estimation_fixture {
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
|
||||
Switching InitializeEstimationProblem(
|
||||
const size_t K, const double between_sigma, const double measurement_sigma,
|
||||
const std::vector<double>& measurements,
|
||||
const std::string& transitionProbabilityTable,
|
||||
HybridNonlinearFactorGraph* graph, Values* initial) {
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements,
|
||||
transitionProbabilityTable);
|
||||
|
||||
// Add prior on M(0)
|
||||
graph->push_back(switching.modeChain.at(0));
|
||||
|
||||
// Add the X(0) prior
|
||||
graph->push_back(switching.unaryFactors.at(0));
|
||||
initial->insert(X(0), switching.linearizationPoint.at<double>(X(0)));
|
||||
|
||||
return switching;
|
||||
}
|
||||
|
||||
} // namespace estimation_fixture
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridSmoother, IncrementalSmoother) {
|
||||
using namespace estimation_fixture;
|
||||
|
||||
size_t K = 5;
|
||||
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
Switching switching = InitializeEstimationProblem(
|
||||
K, 1.0, 0.1, measurements, "1/1 1/1", &graph, &initial);
|
||||
|
||||
HybridSmoother smoother;
|
||||
constexpr size_t maxNrLeaves = 5;
|
||||
|
||||
// Loop over timesteps from 1...K-1
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
|
||||
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
|
||||
graph.push_back(switching.unaryFactors.at(k)); // Measurement
|
||||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
|
||||
Ordering ordering = smoother.getOrdering(linearized);
|
||||
|
||||
smoother.update(linearized, maxNrLeaves, ordering);
|
||||
|
||||
// Clear all the factors from the graph
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
EXPECT_LONGS_EQUAL(11,
|
||||
smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues());
|
||||
|
||||
// Get the continuous delta update as well as
|
||||
// the optimal discrete assignment.
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
// Check discrete assignment
|
||||
DiscreteValues expected_discrete;
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
expected_discrete[M(k)] = discrete_seq[k];
|
||||
}
|
||||
EXPECT(assert_equal(expected_discrete, delta.discrete()));
|
||||
|
||||
// Update nonlinear solution and verify
|
||||
Values result = initial.retract(delta.continuous());
|
||||
Values expected_continuous;
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
expected_continuous.insert(X(k), measurements[k]);
|
||||
}
|
||||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test if pruned Bayes net is set to correct error and no errors are thrown.
|
||||
TEST(HybridSmoother, ValidPruningError) {
|
||||
using namespace estimation_fixture;
|
||||
|
||||
size_t K = 8;
|
||||
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
Switching switching = InitializeEstimationProblem(
|
||||
K, 0.1, 0.1, measurements, "1/1 1/1", &graph, &initial);
|
||||
HybridSmoother smoother;
|
||||
|
||||
constexpr size_t maxNrLeaves = 3;
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
if (k > 1) graph.push_back(switching.modeChain.at(k - 1)); // Mode chain
|
||||
graph.push_back(switching.binaryFactors.at(k - 1)); // Motion Model
|
||||
graph.push_back(switching.unaryFactors.at(k)); // Measurement
|
||||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
|
||||
Ordering ordering = smoother.getOrdering(linearized);
|
||||
|
||||
smoother.update(linearized, maxNrLeaves, ordering);
|
||||
|
||||
// Clear all the factors from the graph
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
EXPECT_LONGS_EQUAL(14,
|
||||
smoother.hybridBayesNet().at(0)->asDiscrete()->nrValues());
|
||||
|
||||
// Get the continuous delta update as well as
|
||||
// the optimal discrete assignment.
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
auto errorTree = smoother.hybridBayesNet().errorTree(delta.continuous());
|
||||
EXPECT_DOUBLES_EQUAL(1e-8, errorTree(delta.discrete()), 1e-8);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue