New example

release/4.3a0
dellaert 2015-06-14 23:07:28 -07:00
parent 5771664622
commit 83171b6096
1 changed files with 87 additions and 37 deletions

View File

@ -280,63 +280,113 @@ TEST(HessianFactor, ConstructorNWay)
}
/* ************************************************************************* */
TEST(HessianFactor, CombineAndEliminate)
{
Matrix A01 = (Matrix(3,3) <<
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0).finished();
Vector3 b0(1,0,0);//(1.5, 1.5, 1.5);
Vector3 s0=Vector3::Ones();//(1.6, 1.6, 1.6);
namespace example {
Matrix A01 = (Matrix(3,3) <<
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0).finished();
Vector3 b0(1,0,0);//(1.5, 1.5, 1.5);
Vector3 s0=Vector3::Ones();//(1.6, 1.6, 1.6);
Matrix A10 = (Matrix(3,3) <<
2.0, 0.0, 0.0,
0.0, 2.0, 0.0,
0.0, 0.0, 2.0).finished();
Matrix A11 = (Matrix(3,3) <<
-2.0, 0.0, 0.0,
0.0, -2.0, 0.0,
0.0, 0.0, -2.0).finished();
Vector3 b1 = Vector3::Zero();//(2.5, 2.5, 2.5);
Vector3 s1=Vector3::Ones();//(2.6, 2.6, 2.6);
Matrix A10 = (Matrix(3,3) <<
2.0, 0.0, 0.0,
0.0, 2.0, 0.0,
0.0, 0.0, 2.0).finished();
Matrix A11 = (Matrix(3,3) <<
-2.0, 0.0, 0.0,
0.0, -2.0, 0.0,
0.0, 0.0, -2.0).finished();
Vector3 b1 = Vector3::Zero();//(2.5, 2.5, 2.5);
Vector3 s1=Vector3::Ones();//(2.6, 2.6, 2.6);
Matrix A21 = (Matrix(3,3) <<
3.0, 0.0, 0.0,
0.0, 3.0, 0.0,
0.0, 0.0, 3.0).finished();
Vector3 b2 = Vector3::Zero();//(3.5, 3.5, 3.5);
Vector3 s2=Vector3::Ones();//(3.6, 3.6, 3.6);
Matrix A21 = (Matrix(3,3) <<
3.0, 0.0, 0.0,
0.0, 3.0, 0.0,
0.0, 0.0, 3.0).finished();
Vector3 b2 = Vector3::Zero();//(3.5, 3.5, 3.5);
Vector3 s2=Vector3::Ones();//(3.6, 3.6, 3.6);
}
/* ************************************************************************* */
TEST(HessianFactor, CombineAndEliminate1) {
using namespace example;
GaussianFactorGraph gfg;
gfg.add(1, A01, b0, noiseModel::Diagonal::Sigmas(s0, true));
gfg.add(0, A10, 1, A11, b1, noiseModel::Diagonal::Sigmas(s1, true));
gfg.add(1, A21, b2, noiseModel::Diagonal::Sigmas(s2, true));
Matrix93 A0; A0 << A10, Z_3x3, Z_3x3;
Matrix93 A1; A1 << A11, A01, A21;
Vector9 b; b << b1, b0, b2;
Vector9 sigmas; sigmas << s1, s0, s2;
Matrix63 A1;
A1 << A11, A21;
Vector6 b, sigmas;
b << b0, b2;
sigmas << s0, s2;
// create a full, uneliminated version of the factor
JacobianFactor expectedFactor(0, A0, 1, A1, b, noiseModel::Diagonal::Sigmas(sigmas, true));
JacobianFactor expectedFactor(1, A1, b,
noiseModel::Diagonal::Sigmas(sigmas, true));
// Make sure combining works
EXPECT(assert_equal(HessianFactor(expectedFactor), HessianFactor(gfg), 1e-6));
// perform elimination on jacobian
Ordering ordering = list_of(1);
GaussianConditional::shared_ptr expectedConditional;
JacobianFactor::shared_ptr expectedRemainingFactor;
boost::tie(expectedConditional, expectedRemainingFactor) = expectedFactor.eliminate(Ordering(list_of(0)));
JacobianFactor::shared_ptr expectedRemaining;
boost::tie(expectedConditional, expectedRemaining) = //
expectedFactor.eliminate(ordering);
// Eliminate
GaussianConditional::shared_ptr actualConditional;
HessianFactor::shared_ptr actualCholeskyFactor;
boost::tie(actualConditional, actualCholeskyFactor) = EliminateCholesky(gfg, Ordering(list_of(0)));
HessianFactor::shared_ptr actualHessian;
boost::tie(actualConditional, actualHessian) = //
EliminateCholesky(gfg, ordering);
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
VectorValues vv; vv.insert(1, Vector3(1,2,3));
EXPECT_DOUBLES_EQUAL(expectedRemainingFactor->error(vv), actualCholeskyFactor->error(vv), 1e-9);
EXPECT(assert_equal(HessianFactor(*expectedRemainingFactor), *actualCholeskyFactor, 1e-6));
VectorValues vv;
vv.insert(1, Vector3(1, 2, 3));
DOUBLES_EQUAL(expectedRemaining->error(vv), actualHessian->error(vv), 1e-9);
EXPECT(assert_equal(HessianFactor(*expectedRemaining), *actualHessian, 1e-6));
}
/* ************************************************************************* */
TEST(HessianFactor, CombineAndEliminate2) {
using namespace example;
GaussianFactorGraph gfg;
gfg.add(1, A01, b0, noiseModel::Diagonal::Sigmas(s0, true));
gfg.add(0, A10, 1, A11, b1, noiseModel::Diagonal::Sigmas(s1, true));
gfg.add(1, A21, b2, noiseModel::Diagonal::Sigmas(s2, true));
Matrix93 A0, A1;
A0 << A10, Z_3x3, Z_3x3;
A1 << A11, A01, A21;
Vector9 b, sigmas;
b << b1, b0, b2;
sigmas << s1, s0, s2;
// create a full, uneliminated version of the factor
JacobianFactor expectedFactor(0, A0, 1, A1, b,
noiseModel::Diagonal::Sigmas(sigmas, true));
// Make sure combining works
EXPECT(assert_equal(HessianFactor(expectedFactor), HessianFactor(gfg), 1e-6));
// perform elimination on jacobian
Ordering ordering = list_of(0);
GaussianConditional::shared_ptr expectedConditional;
JacobianFactor::shared_ptr expectedRemaining;
boost::tie(expectedConditional, expectedRemaining) = //
expectedFactor.eliminate(ordering);
// Eliminate
GaussianConditional::shared_ptr actualConditional;
HessianFactor::shared_ptr actualHessian;
boost::tie(actualConditional, actualHessian) = //
EliminateCholesky(gfg, ordering);
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
VectorValues vv;
vv.insert(1, Vector3(1, 2, 3));
DOUBLES_EQUAL(expectedRemaining->error(vv), actualHessian->error(vv), 1e-9);
EXPECT(assert_equal(HessianFactor(*expectedRemaining), *actualHessian, 1e-6));
}
/* ************************************************************************* */