Merge pull request #2019 from borglab/city10000-py
commit
82fcedf2da
|
@ -24,6 +24,16 @@
|
|||
// #define DEBUG_SMOOTHER
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::reInitialize(HybridBayesNet &&hybridBayesNet) {
|
||||
hybridBayesNet_ = std::move(hybridBayesNet);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::reInitialize(HybridBayesNet &hybridBayesNet) {
|
||||
this->reInitialize(std::move(hybridBayesNet));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Ordering HybridSmoother::getOrdering(const HybridGaussianFactorGraph &factors,
|
||||
const KeySet &lastKeysToEliminate) {
|
||||
|
@ -78,9 +88,11 @@ void HybridSmoother::update(const HybridGaussianFactorGraph &newFactors,
|
|||
// If no ordering provided, then we compute one
|
||||
if (!given_ordering.has_value()) {
|
||||
// Get the keys from the new factors
|
||||
KeySet continuousKeysToInclude; // Scheme 1: empty, 15sec/2000, 64sec/3000 (69s without TF)
|
||||
// continuousKeysToInclude = newFactors.keys(); // Scheme 2: all, 8sec/2000, 160sec/3000
|
||||
// continuousKeysToInclude = updatedGraph.keys(); // Scheme 3: all, stopped after 80sec/2000
|
||||
KeySet continuousKeysToInclude; // Scheme 1: empty, 15sec/2000, 64sec/3000
|
||||
// (69s without TF)
|
||||
// continuousKeysToInclude = newFactors.keys(); // Scheme 2: all,
|
||||
// 8sec/2000, 160sec/3000 continuousKeysToInclude = updatedGraph.keys(); //
|
||||
// Scheme 3: all, stopped after 80sec/2000
|
||||
|
||||
// Since updatedGraph now has all the connected conditionals,
|
||||
// we can get the correct ordering.
|
||||
|
|
|
@ -49,9 +49,13 @@ class GTSAM_EXPORT HybridSmoother {
|
|||
/**
|
||||
* Re-initialize the smoother from a new hybrid Bayes Net.
|
||||
*/
|
||||
void reInitialize(HybridBayesNet&& hybridBayesNet) {
|
||||
hybridBayesNet_ = std::move(hybridBayesNet);
|
||||
}
|
||||
void reInitialize(HybridBayesNet&& hybridBayesNet);
|
||||
|
||||
/**
|
||||
* Re-initialize the smoother from
|
||||
* a new hybrid Bayes Net (non rvalue version).
|
||||
*/
|
||||
void reInitialize(HybridBayesNet& hybridBayesNet);
|
||||
|
||||
/**
|
||||
* Given new factors, perform an incremental update.
|
||||
|
|
|
@ -227,14 +227,20 @@ class HybridNonlinearFactorGraph {
|
|||
void push_back(gtsam::HybridFactor* factor);
|
||||
void push_back(gtsam::NonlinearFactor* factor);
|
||||
void push_back(gtsam::DiscreteFactor* factor);
|
||||
void push_back(const gtsam::HybridNonlinearFactorGraph& graph);
|
||||
// TODO(Varun) Wrap add() methods
|
||||
|
||||
gtsam::HybridGaussianFactorGraph linearize(
|
||||
const gtsam::Values& continuousValues) const;
|
||||
|
||||
bool empty() const;
|
||||
void remove(size_t i);
|
||||
size_t size() const;
|
||||
void resize(size_t size);
|
||||
gtsam::KeySet keys() const;
|
||||
const gtsam::HybridFactor* at(size_t i) const;
|
||||
gtsam::HybridNonlinearFactorGraph restrict(
|
||||
const gtsam::DiscreteValues& assignment) const;
|
||||
|
||||
void print(string s = "HybridNonlinearFactorGraph\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
|
@ -243,8 +249,7 @@ class HybridNonlinearFactorGraph {
|
|||
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
class HybridNonlinearFactor : gtsam::HybridFactor {
|
||||
HybridNonlinearFactor(
|
||||
const gtsam::DiscreteKey& discreteKey,
|
||||
HybridNonlinearFactor(const gtsam::DiscreteKey& discreteKey,
|
||||
const std::vector<gtsam::NoiseModelFactor*>& factors);
|
||||
|
||||
HybridNonlinearFactor(
|
||||
|
@ -266,4 +271,29 @@ class HybridNonlinearFactor : gtsam::HybridFactor {
|
|||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/HybridSmoother.h>
|
||||
class HybridSmoother {
|
||||
HybridSmoother(const std::optional<double> marginalThreshold = std::nullopt);
|
||||
|
||||
const gtsam::DiscreteValues& fixedValues() const;
|
||||
void reInitialize(gtsam::HybridBayesNet& hybridBayesNet);
|
||||
|
||||
void update(
|
||||
const gtsam::HybridGaussianFactorGraph& graph,
|
||||
std::optional<size_t> maxNrLeaves = std::nullopt,
|
||||
const std::optional<gtsam::Ordering> given_ordering = std::nullopt);
|
||||
|
||||
gtsam::Ordering getOrdering(const gtsam::HybridGaussianFactorGraph& factors,
|
||||
const gtsam::KeySet& newFactorKeys);
|
||||
|
||||
std::pair<gtsam::HybridGaussianFactorGraph, gtsam::HybridBayesNet>
|
||||
addConditionals(const gtsam::HybridGaussianFactorGraph& graph,
|
||||
const gtsam::HybridBayesNet& hybridBayesNet) const;
|
||||
|
||||
gtsam::HybridGaussianConditional* gaussianMixture(size_t index) const;
|
||||
|
||||
const gtsam::HybridBayesNet& hybridBayesNet() const;
|
||||
gtsam::HybridValues optimize() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -32,6 +32,8 @@ virtual class Gaussian : gtsam::noiseModel::Base {
|
|||
gtsam::Vector unwhiten(gtsam::Vector v) const;
|
||||
gtsam::Matrix Whiten(gtsam::Matrix H) const;
|
||||
|
||||
double negLogConstant() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serializable() const;
|
||||
};
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
*.txt
|
|
@ -0,0 +1,320 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Script for running hybrid estimator on the City10000 dataset.
|
||||
|
||||
Author: Varun Agrawal
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from gtsam.symbol_shorthand import L, M, X
|
||||
|
||||
import gtsam
|
||||
from gtsam import (BetweenFactorPose2, HybridNonlinearFactor,
|
||||
HybridNonlinearFactorGraph, HybridSmoother, HybridValues,
|
||||
Pose2, PriorFactorPose2, Values)
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""Parse command line arguments"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data_file",
|
||||
help="The path to the City10000 data file",
|
||||
default="T1_city10000_04.txt")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
# Noise models
|
||||
open_loop_model = gtsam.noiseModel.Diagonal.Sigmas(np.ones(3) * 10)
|
||||
open_loop_constant = open_loop_model.negLogConstant()
|
||||
|
||||
prior_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
||||
np.asarray([0.0001, 0.0001, 0.0001]))
|
||||
|
||||
pose_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
||||
np.asarray([1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0]))
|
||||
pose_noise_constant = pose_noise_model.negLogConstant()
|
||||
|
||||
|
||||
class City10000Dataset:
|
||||
"""Class representing the City10000 dataset."""
|
||||
|
||||
def __init__(self, filename):
|
||||
self.filename_ = filename
|
||||
try:
|
||||
self.f_ = open(self.filename_, 'r')
|
||||
except OSError:
|
||||
print(f"Failed to open file: {self.filename_}")
|
||||
|
||||
def __del__(self):
|
||||
self.f_.close()
|
||||
|
||||
def read_line(self, line: str, delimiter: str = " "):
|
||||
"""Read a `line` from the dataset, separated by the `delimiter`."""
|
||||
return line.split(delimiter)
|
||||
|
||||
def parse_line(self, line: str) -> tuple[list[Pose2], tuple[int, int]]:
|
||||
"""Parse line from file"""
|
||||
parts = self.read_line(line)
|
||||
|
||||
key_s = int(parts[1])
|
||||
key_t = int(parts[3])
|
||||
|
||||
num_measurements = int(parts[5])
|
||||
pose_array = [Pose2()] * num_measurements
|
||||
|
||||
for i in range(num_measurements):
|
||||
x = float(parts[6 + 3 * i])
|
||||
y = float(parts[7 + 3 * i])
|
||||
rad = float(parts[8 + 3 * i])
|
||||
pose_array[i] = Pose2(x, y, rad)
|
||||
|
||||
return pose_array, (key_s, key_t)
|
||||
|
||||
def next(self):
|
||||
"""Read and parse the next line."""
|
||||
line = self.f_.readline()
|
||||
if line:
|
||||
return self.parse_line(line)
|
||||
else:
|
||||
return None, None
|
||||
|
||||
|
||||
class Experiment:
|
||||
"""Experiment Class"""
|
||||
|
||||
def __init__(self,
|
||||
filename: str,
|
||||
marginal_threshold: float = 0.9999,
|
||||
max_loop_count: int = 8000,
|
||||
update_frequency: int = 3,
|
||||
max_num_hypotheses: int = 10,
|
||||
relinearization_frequency: int = 10):
|
||||
self.dataset_ = City10000Dataset(filename)
|
||||
self.max_loop_count = max_loop_count
|
||||
self.update_frequency = update_frequency
|
||||
self.max_num_hypotheses = max_num_hypotheses
|
||||
self.relinearization_frequency = relinearization_frequency
|
||||
|
||||
self.smoother_ = HybridSmoother(marginal_threshold)
|
||||
self.new_factors_ = HybridNonlinearFactorGraph()
|
||||
self.all_factors_ = HybridNonlinearFactorGraph()
|
||||
self.initial_ = Values()
|
||||
|
||||
def hybrid_loop_closure_factor(self, loop_counter, key_s, key_t,
|
||||
measurement: Pose2):
|
||||
"""
|
||||
Create a hybrid loop closure factor where
|
||||
0 - loose noise model and 1 - loop noise model.
|
||||
"""
|
||||
l = (L(loop_counter), 2)
|
||||
f0 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
|
||||
open_loop_model)
|
||||
f1 = BetweenFactorPose2(X(key_s), X(key_t), measurement,
|
||||
pose_noise_model)
|
||||
factors = [(f0, open_loop_constant), (f1, pose_noise_constant)]
|
||||
mixture_factor = HybridNonlinearFactor(l, factors)
|
||||
return mixture_factor
|
||||
|
||||
def hybrid_odometry_factor(self, key_s, key_t, m,
|
||||
pose_array) -> HybridNonlinearFactor:
|
||||
"""Create hybrid odometry factor with discrete measurement choices."""
|
||||
f0 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[0],
|
||||
pose_noise_model)
|
||||
f1 = BetweenFactorPose2(X(key_s), X(key_t), pose_array[1],
|
||||
pose_noise_model)
|
||||
|
||||
factors = [(f0, pose_noise_constant), (f1, pose_noise_constant)]
|
||||
mixture_factor = HybridNonlinearFactor(m, factors)
|
||||
|
||||
return mixture_factor
|
||||
|
||||
def smoother_update(self, max_num_hypotheses) -> float:
|
||||
"""Perform smoother update and optimize the graph."""
|
||||
print(f"Smoother update: {self.new_factors_.size()}")
|
||||
before_update = time.time()
|
||||
linearized = self.new_factors_.linearize(self.initial_)
|
||||
self.smoother_.update(linearized, max_num_hypotheses)
|
||||
self.all_factors_.push_back(self.new_factors_)
|
||||
self.new_factors_.resize(0)
|
||||
after_update = time.time()
|
||||
return after_update - before_update
|
||||
|
||||
def reInitialize(self) -> float:
|
||||
"""Re-linearize, solve ALL, and re-initialize smoother."""
|
||||
print(f"================= Re-Initialize: {self.all_factors_.size()}")
|
||||
before_update = time.time()
|
||||
self.all_factors_ = self.all_factors_.restrict(
|
||||
self.smoother_.fixedValues())
|
||||
linearized = self.all_factors_.linearize(self.initial_)
|
||||
bayesNet = linearized.eliminateSequential()
|
||||
delta: HybridValues = bayesNet.optimize()
|
||||
self.initial_ = self.initial_.retract(delta.continuous())
|
||||
self.smoother_.reInitialize(bayesNet)
|
||||
after_update = time.time()
|
||||
print(f"Took {after_update - before_update} seconds.")
|
||||
return after_update - before_update
|
||||
|
||||
def run(self):
|
||||
"""Run the main experiment with a given max_loop_count."""
|
||||
# Initialize local variables
|
||||
discrete_count = 0
|
||||
index = 0
|
||||
loop_count = 0
|
||||
update_count = 0
|
||||
|
||||
time_list = [] #list[(int, float)]
|
||||
|
||||
# Set up initial prior
|
||||
priorPose = Pose2(0, 0, 0)
|
||||
self.initial_.insert(X(0), priorPose)
|
||||
self.new_factors_.push_back(
|
||||
PriorFactorPose2(X(0), priorPose, prior_noise_model))
|
||||
|
||||
# Initial update
|
||||
update_time = self.smoother_update(self.max_num_hypotheses)
|
||||
smoother_update_times = [] # list[(int, float)]
|
||||
smoother_update_times.append((index, update_time))
|
||||
|
||||
# Flag to decide whether to run smoother update
|
||||
number_of_hybrid_factors = 0
|
||||
|
||||
# Start main loop
|
||||
result = Values()
|
||||
start_time = time.time()
|
||||
|
||||
while index < self.max_loop_count:
|
||||
pose_array, keys = self.dataset_.next()
|
||||
if pose_array is None:
|
||||
break
|
||||
key_s = keys[0]
|
||||
key_t = keys[1]
|
||||
|
||||
num_measurements = len(pose_array)
|
||||
|
||||
# Take the first one as the initial estimate
|
||||
odom_pose = pose_array[0]
|
||||
if key_s == key_t - 1:
|
||||
# Odometry factor
|
||||
if num_measurements > 1:
|
||||
# Add hybrid factor
|
||||
m = (M(discrete_count), num_measurements)
|
||||
mixture_factor = self.hybrid_odometry_factor(
|
||||
key_s, key_t, m, pose_array)
|
||||
self.new_factors_.push_back(mixture_factor)
|
||||
|
||||
discrete_count += 1
|
||||
number_of_hybrid_factors += 1
|
||||
print(f"mixture_factor: {key_s} {key_t}")
|
||||
else:
|
||||
self.new_factors_.push_back(
|
||||
BetweenFactorPose2(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model))
|
||||
|
||||
# Insert next pose initial guess
|
||||
self.initial_.insert(
|
||||
X(key_t),
|
||||
self.initial_.atPose2(X(key_s)) * odom_pose)
|
||||
else:
|
||||
# Loop closure
|
||||
loop_factor = self.hybrid_loop_closure_factor(
|
||||
loop_count, key_s, key_t, odom_pose)
|
||||
|
||||
# print loop closure event keys:
|
||||
print(f"Loop closure: {key_s} {key_t}")
|
||||
self.new_factors_.push_back(loop_factor)
|
||||
number_of_hybrid_factors += 1
|
||||
loop_count += 1
|
||||
|
||||
if number_of_hybrid_factors >= self.update_frequency:
|
||||
update_time = self.smoother_update(self.max_num_hypotheses)
|
||||
smoother_update_times.append((index, update_time))
|
||||
number_of_hybrid_factors = 0
|
||||
update_count += 1
|
||||
|
||||
if update_count % self.relinearization_frequency == 0:
|
||||
self.reInitialize()
|
||||
|
||||
# Record timing for odometry edges only
|
||||
if key_s == key_t - 1:
|
||||
cur_time = time.time()
|
||||
time_list.append(cur_time - start_time)
|
||||
|
||||
# Print some status every 100 steps
|
||||
if index % 100 == 0:
|
||||
print(f"Index: {index}")
|
||||
|
||||
if len(time_list) != 0:
|
||||
print(f"Accumulate time: {time_list[-1]} seconds")
|
||||
|
||||
index += 1
|
||||
|
||||
# Final update
|
||||
update_time = self.smoother_update(self.max_num_hypotheses)
|
||||
smoother_update_times.append((index, update_time))
|
||||
|
||||
# Final optimize
|
||||
delta = self.smoother_.optimize()
|
||||
|
||||
result.insert_or_assign(self.initial_.retract(delta.continuous()))
|
||||
|
||||
print(f"Final error: {self.smoother_.hybridBayesNet().error(delta)}")
|
||||
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
print(f"Total time: {total_time} seconds")
|
||||
|
||||
# Write results to file
|
||||
self.write_result(result, key_t + 1, "Hybrid_City10000.txt")
|
||||
|
||||
# Write timing info to file
|
||||
self.write_timing_info(time_list=time_list)
|
||||
|
||||
def write_result(self, result, num_poses, filename="Hybrid_city10000.txt"):
|
||||
"""
|
||||
Write the result of optimization to file.
|
||||
|
||||
Args:
|
||||
result (Values): he Values object with the final result.
|
||||
num_poses (int): The number of poses to write to the file.
|
||||
filename (str): The file name to save the result to.
|
||||
"""
|
||||
with open(filename, 'w') as outfile:
|
||||
|
||||
for i in range(num_poses):
|
||||
out_pose = result.atPose2(X(i))
|
||||
outfile.write(
|
||||
f"{out_pose.x()} {out_pose.y()} {out_pose.theta()}\n")
|
||||
|
||||
print(f"Output written to {filename}")
|
||||
|
||||
def write_timing_info(self,
|
||||
time_list,
|
||||
time_filename="Hybrid_City10000_time.txt"):
|
||||
"""Log all the timing information to a file"""
|
||||
|
||||
with open(time_filename, 'w') as out_file_time:
|
||||
|
||||
for acc_time in time_list:
|
||||
out_file_time.write(f"{acc_time}\n")
|
||||
|
||||
print(f"Output {time_filename} file.")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main runner"""
|
||||
args = parse_arguments()
|
||||
|
||||
experiment = Experiment(gtsam.findExampleDataFile(args.data_file))
|
||||
experiment.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,107 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Script to plot City10000 results.
|
||||
Can be used to plot results from both C++ and python scripts.
|
||||
|
||||
Usage:
|
||||
```
|
||||
python plot_city10000.py ../../../examples/Data/ISAM2_GT_city10000.txt \
|
||||
--estimates ../../../build/examples/ISAM2_city10000.txt \
|
||||
../../../build/examples/Hybrid_City10000.txt
|
||||
```
|
||||
|
||||
NOTE: We can pass in as many estimates as we need,
|
||||
though we also need to pass in the same number of --colors and --labels.
|
||||
|
||||
You can generate estimates by running
|
||||
- `make ISAM2_City10000.run` for the ISAM2 version
|
||||
- `make Hybrid_City10000.run` for the Hybrid Smoother version
|
||||
|
||||
Author: Varun Agrawal
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def parse_args():
|
||||
"""Parse command line arguments"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("ground_truth", help="The ground truth data file.")
|
||||
parser.add_argument(
|
||||
"--estimates",
|
||||
nargs='+',
|
||||
help="File(s) with estimates (as .txt), can be more than one.")
|
||||
parser.add_argument("--labels",
|
||||
nargs='+',
|
||||
help="Label to apply to the estimate graph.",
|
||||
default=("ISAM2", "Hybrid Factor Graphs"))
|
||||
parser.add_argument(
|
||||
"--colors",
|
||||
nargs='+',
|
||||
help="The color to apply to each of the estimate graphs.",
|
||||
default=((0.9, 0.1, 0.1, 0.4), (0.1, 0.1, 0.9, 0.4)))
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def plot_estimates(gt,
|
||||
estimates,
|
||||
fignum: int,
|
||||
estimate_color=(0.1, 0.1, 0.9, 0.4),
|
||||
estimate_label="Hybrid Factor Graphs"):
|
||||
"""Plot the City10000 estimates against the ground truth.
|
||||
|
||||
Args:
|
||||
gt (np.ndarray): The ground truth trajectory as xy values.
|
||||
estimates (np.ndarray): The estimates trajectory as xy values.
|
||||
fignum (int): The figure number for multiple plots.
|
||||
estimate_color (tuple, optional): The color to use for the graph of estimates.
|
||||
Defaults to (0.1, 0.1, 0.9, 0.4).
|
||||
estimate_label (str, optional): Label for the estimates, used in the legend.
|
||||
Defaults to "Hybrid Factor Graphs".
|
||||
"""
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca()
|
||||
ax.axis('equal')
|
||||
ax.axis((-65.0, 65.0, -75.0, 60.0))
|
||||
ax.plot(gt[:, 0],
|
||||
gt[:, 1],
|
||||
'--',
|
||||
linewidth=1,
|
||||
color=(0.1, 0.7, 0.1, 0.5),
|
||||
label="Ground Truth")
|
||||
ax.plot(estimates[:, 0],
|
||||
estimates[:, 1],
|
||||
'-',
|
||||
linewidth=1,
|
||||
color=estimate_color,
|
||||
label=estimate_label)
|
||||
ax.legend()
|
||||
|
||||
|
||||
def main():
|
||||
"""Main runner"""
|
||||
args = parse_args()
|
||||
gt = np.loadtxt(args.ground_truth, delimiter=" ")
|
||||
|
||||
for i in range(len(args.estimates)):
|
||||
h_poses = np.loadtxt(args.estimates[i], delimiter=" ")
|
||||
# Limit ground truth to the number of estimates so the plot looks cleaner
|
||||
plot_estimates(gt[:h_poses.shape[0]],
|
||||
h_poses,
|
||||
i + 1,
|
||||
estimate_color=args.colors[i],
|
||||
estimate_label=args.labels[i])
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue