Merge remote-tracking branch 'origin/develop' into fix/zeroRowInQR

release/4.3a0
dellaert 2015-06-15 01:09:19 -07:00
commit 82f6ca64a5
9 changed files with 157 additions and 53 deletions

View File

@ -91,8 +91,42 @@ namespace gtsam {
double Z = K_->baseline() * K_->fx() / (measured[0] - measured[1]);
double X = Z * (measured[0] - K_->px()) / K_->fx();
double Y = Z * (measured[2] - K_->py()) / K_->fy();
Point3 world_point = leftCamPose_.transform_from(Point3(X, Y, Z));
return world_point;
Point3 point = leftCamPose_.transform_from(Point3(X, Y, Z));
return point;
}
/* ************************************************************************* */
Point3 StereoCamera::backproject2(const StereoPoint2& z, OptionalJacobian<3, 6> H1,
OptionalJacobian<3, 3> H2) const {
const Cal3_S2Stereo& K = *K_;
const double fx = K.fx(), fy = K.fy(), cx = K.px(), cy = K.py(), b = K.baseline();
double uL = z.uL(), uR = z.uR(), v = z.v();
double disparity = uL - uR;
double local_z = b * fx / disparity;
const Point3 local(local_z * (uL - cx)/ fx, local_z * (v - cy) / fy, local_z);
if(H1 || H2) {
double z_partial_uR = local_z/disparity;
double x_partial_uR = local.x()/disparity;
double y_partial_uR = local.y()/disparity;
Matrix3 D_local_z;
D_local_z << -x_partial_uR + local.z()/fx, x_partial_uR, 0,
-y_partial_uR, y_partial_uR, local.z() / fy,
-z_partial_uR, z_partial_uR, 0;
Matrix3 D_point_local;
const Point3 point = leftCamPose_.transform_from(local, H1, D_point_local);
if(H2) {
*H2 = D_point_local * D_local_z;
}
return point;
}
return leftCamPose_.transform_from(local);
}
}

View File

@ -137,6 +137,14 @@ public:
/// back-project a measurement
Point3 backproject(const StereoPoint2& z) const;
/** Back-project the 2D point and compute optional derivatives
* @param H1 derivative with respect to pose
* @param H2 derivative with respect to point
*/
Point3 backproject2(const StereoPoint2& z,
OptionalJacobian<3, 6> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const;
/// @}
/// @name Deprecated
/// @{

View File

@ -99,13 +99,13 @@ TEST( StereoCamera, Dproject)
Matrix actual1; stereoCam.project2(landmark, actual1, boost::none);
CHECK(assert_equal(expected1,actual1,1e-7));
Matrix expected2 = numericalDerivative32(project3,camPose, landmark, *K);
Matrix expected2 = numericalDerivative32(project3, camPose, landmark, *K);
Matrix actual2; stereoCam.project2(landmark, boost::none, actual2);
CHECK(assert_equal(expected2,actual2,1e-7));
}
/* ************************************************************************* */
TEST( StereoCamera, backproject)
TEST( StereoCamera, backproject_case1)
{
Cal3_S2Stereo::shared_ptr K2(new Cal3_S2Stereo(1500, 1500, 0, 320, 240, 0.5));
StereoCamera stereoCam2(Pose3(), K2);
@ -117,7 +117,7 @@ TEST( StereoCamera, backproject)
}
/* ************************************************************************* */
TEST( StereoCamera, backproject2)
TEST( StereoCamera, backproject_case2)
{
Rot3 R(0.589511291, -0.804859792, 0.0683931805,
-0.804435942, -0.592650676, -0.0405925523,
@ -132,6 +132,53 @@ TEST( StereoCamera, backproject2)
CHECK(assert_equal(z, actual, 1e-3));
}
static Point3 backproject3(const Pose3& pose, const StereoPoint2& point, const Cal3_S2Stereo& K) {
return StereoCamera(pose, boost::make_shared<Cal3_S2Stereo>(K)).backproject(point);
}
/* ************************************************************************* */
TEST( StereoCamera, backproject2_case1)
{
Cal3_S2Stereo::shared_ptr K2(new Cal3_S2Stereo(1500, 1500, 0, 320, 240, 0.5));
StereoCamera stereoCam2(Pose3(), K2);
Point3 expected_point(1.2, 2.3, 4.5);
StereoPoint2 stereo_point = stereoCam2.project(expected_point);
Matrix actual_jacobian_1, actual_jacobian_2;
Point3 actual_point = stereoCam2.backproject2(stereo_point, actual_jacobian_1, actual_jacobian_2);
CHECK(assert_equal(expected_point, actual_point, 1e-8));
Matrix expected_jacobian_to_pose = numericalDerivative31(backproject3, Pose3(), stereo_point, *K2);
CHECK(assert_equal(expected_jacobian_to_pose, actual_jacobian_1, 1e-6));
Matrix expected_jacobian_to_point = numericalDerivative32(backproject3, Pose3(), stereo_point, *K2);
CHECK(assert_equal(expected_jacobian_to_point, actual_jacobian_2, 1e-6));
}
TEST( StereoCamera, backproject2_case2)
{
Rot3 R(0.589511291, -0.804859792, 0.0683931805,
-0.804435942, -0.592650676, -0.0405925523,
0.0732045588, -0.0310882277, -0.996832359);
Point3 t(53.5239823, 23.7866016, -4.42379876);
Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(1733.75, 1733.75, 0, 689.645, 508.835, 0.0699612));
StereoCamera camera(Pose3(R,t), K);
StereoPoint2 z(184.812, 129.068, 714.768);
Matrix actual_jacobian_1, actual_jacobian_2;
Point3 l = camera.backproject2(z, actual_jacobian_1, actual_jacobian_2);
StereoPoint2 actual = camera.project(l);
CHECK(assert_equal(z, actual, 1e-3));
Matrix expected_jacobian_to_pose = numericalDerivative31(backproject3, Pose3(R,t), z, *K);
CHECK(assert_equal(expected_jacobian_to_pose, actual_jacobian_1, 1e-6));
Matrix expected_jacobian_to_point = numericalDerivative32(backproject3, Pose3(R,t), z, *K);
CHECK(assert_equal(expected_jacobian_to_point, actual_jacobian_2, 1e-6));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -568,6 +568,51 @@ void JacobianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
transposeMultiplyAdd(alpha, Ax, y);
}
/* ************************************************************************* */
/** Raw memory access version of multiplyHessianAdd y += alpha * A'*A*x
* Note: this is not assuming a fixed dimension for the variables,
* but requires the vector accumulatedDims to tell the dimension of
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
* then accumulatedDims is [0 3 9 11 13]
* NOTE: size of accumulatedDims is size of keys + 1!!
* TODO Frank asks: why is this here if not regular ????
*/
void JacobianFactor::multiplyHessianAdd(double alpha, const double* x, double* y,
const std::vector<size_t>& accumulatedDims) const {
/// Use Eigen magic to access raw memory
typedef Eigen::Map<Vector> VectorMap;
typedef Eigen::Map<const Vector> ConstVectorMap;
if (empty())
return;
Vector Ax = zero(Ab_.rows());
/// Just iterate over all A matrices and multiply in correct config part (looping over keys)
/// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
/// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
for (size_t pos = 0; pos < size(); ++pos) {
size_t offset = accumulatedDims[keys_[pos]];
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
Ax += Ab_(pos) * ConstVectorMap(x + offset, dim);
}
/// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) {
model_->whitenInPlace(Ax);
model_->whitenInPlace(Ax);
}
/// multiply with alpha
Ax *= alpha;
/// Again iterate over all A matrices and insert Ai^T into y
for (size_t pos = 0; pos < size(); ++pos) {
size_t offset = accumulatedDims[keys_[pos]];
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
VectorMap(y + offset, dim) += Ab_(pos).transpose() * Ax;
}
}
/* ************************************************************************* */
VectorValues JacobianFactor::gradientAtZero() const {
VectorValues g;

View File

@ -290,6 +290,17 @@ namespace gtsam {
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const;
/**
* Raw memory access version of multiplyHessianAdd y += alpha * A'*A*x
* Requires the vector accumulatedDims to tell the dimension of
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
* then accumulatedDims is [0 3 9 11 13]
* NOTE: size of accumulatedDims is size of keys + 1!!
* TODO(frank): we should probably kill this if no longer needed
*/
void multiplyHessianAdd(double alpha, const double* x, double* y,
const std::vector<size_t>& accumulatedDims) const;
/// A'*b for Jacobian
VectorValues gradientAtZero() const;

View File

@ -10,9 +10,10 @@
* -------------------------------------------------------------------------- */
/**
* @file HessianFactor.cpp
* @file Scatter.cpp
* @author Richard Roberts
* @date Dec 8, 2010
* @author Frank Dellaert
* @date June 2015
*/
#include <gtsam/linear/GaussianFactorGraph.h>

View File

@ -14,7 +14,7 @@
* @brief Maps global variable indices to slot indices
* @author Richard Roberts
* @author Frank Dellaert
* @date Dec 8, 2010
* @date June 2015
*/
#pragma once

View File

@ -46,7 +46,7 @@ public:
public:
double lambdaInitial; ///< The initial Levenberg-Marquardt damping term (default: 1e-4)
double lambdaInitial; ///< The initial Levenberg-Marquardt damping term (default: 1e-5)
double lambdaFactor; ///< The amount by which to multiply or divide lambda when adjusting lambda (default: 10.0)
double lambdaUpperBound; ///< The maximum lambda to try before assuming the optimization has failed (default: 1e5)
double lambdaLowerBound; ///< The minimum lambda used in LM (default: 0)

View File

@ -68,6 +68,8 @@ public:
JacobianFactor(keys, augmentedMatrix, sigmas) {
}
using JacobianFactor::multiplyHessianAdd;
/** y += alpha * A'*A*x */
virtual void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
@ -182,50 +184,6 @@ public:
return model_ ? model_->whiten(Ax) : Ax;
}
/** Raw memory access version of multiplyHessianAdd y += alpha * A'*A*x
* Note: this is not assuming a fixed dimension for the variables,
* but requires the vector accumulatedDims to tell the dimension of
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
* then accumulatedDims is [0 3 9 11 13]
* NOTE: size of accumulatedDims is size of keys + 1!!
* TODO Frank asks: why is this here if not regular ????
*/
void multiplyHessianAdd(double alpha, const double* x, double* y,
const std::vector<size_t>& accumulatedDims) const {
/// Use Eigen magic to access raw memory
typedef Eigen::Map<Vector> VectorMap;
typedef Eigen::Map<const Vector> ConstVectorMap;
if (empty())
return;
Vector Ax = zero(Ab_.rows());
/// Just iterate over all A matrices and multiply in correct config part (looping over keys)
/// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
/// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
for (size_t pos = 0; pos < size(); ++pos) {
size_t offset = accumulatedDims[keys_[pos]];
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
Ax += Ab_(pos) * ConstVectorMap(x + offset, dim);
}
/// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) {
model_->whitenInPlace(Ax);
model_->whitenInPlace(Ax);
}
/// multiply with alpha
Ax *= alpha;
/// Again iterate over all A matrices and insert Ai^T into y
for (size_t pos = 0; pos < size(); ++pos) {
size_t offset = accumulatedDims[keys_[pos]];
size_t dim = accumulatedDims[keys_[pos] + 1] - offset;
VectorMap(y + offset, dim) += Ab_(pos).transpose() * Ax;
}
}
};
// end class RegularJacobianFactor