put in place initial functions

release/4.3a0
lcarlone 2021-07-19 16:11:18 -04:00
parent 00387b32cd
commit 82844b541c
2 changed files with 102 additions and 126 deletions

View File

@ -19,86 +19,4 @@
namespace gtsam {
//
//void SmartProjectionPoseFactorRollingShutter::add(
// const std::vector<StereoPoint2>& measurements,
// const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
// const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks) {
// assert(world_P_body_keys.size() == measurements.size());
// assert(world_P_body_keys.size() == body_P_cam_keys.size());
// assert(world_P_body_keys.size() == Ks.size());
// for (size_t i = 0; i < measurements.size(); i++) {
// Base::add(measurements[i], world_P_body_keys[i]);
// // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
// if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
// keys_.push_back(body_P_cam_keys[i]); // add only unique keys
//
// world_P_body_keys_.push_back(world_P_body_keys[i]);
// body_P_cam_keys_.push_back(body_P_cam_keys[i]);
//
// K_all_.push_back(Ks[i]);
// }
//}
//
//void SmartProjectionPoseFactorRollingShutter::add(
// const std::vector<StereoPoint2>& measurements,
// const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
// const boost::shared_ptr<Cal3_S2Stereo>& K) {
// assert(world_P_body_keys.size() == measurements.size());
// assert(world_P_body_keys.size() == body_P_cam_keys.size());
// for (size_t i = 0; i < measurements.size(); i++) {
// Base::add(measurements[i], world_P_body_keys[i]);
// // pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
// if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
// keys_.push_back(body_P_cam_keys[i]); // add only unique keys
//
// world_P_body_keys_.push_back(world_P_body_keys[i]);
// body_P_cam_keys_.push_back(body_P_cam_keys[i]);
//
// K_all_.push_back(K);
// }
//}
//
//void SmartProjectionPoseFactorRollingShutter::print(
// const std::string& s, const KeyFormatter& keyFormatter) const {
// std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
// for (size_t i = 0; i < K_all_.size(); i++) {
// K_all_[i]->print("calibration = ");
// std::cout << " extrinsic pose key: " << keyFormatter(body_P_cam_keys_[i]) << std::endl;
// }
// Base::print("", keyFormatter);
//}
//
//bool SmartProjectionPoseFactorRollingShutter::equals(const NonlinearFactor& p,
// double tol) const {
// const SmartProjectionPoseFactorRollingShutter* e =
// dynamic_cast<const SmartProjectionPoseFactorRollingShutter*>(&p);
//
// return e && Base::equals(p, tol) &&
// body_P_cam_keys_ == e->getExtrinsicPoseKeys();
//}
//
//double SmartProjectionPoseFactorRollingShutter::error(const Values& values) const {
// if (this->active(values)) {
// return this->totalReprojectionError(cameras(values));
// } else { // else of active flag
// return 0.0;
// }
//}
//
//SmartProjectionPoseFactorRollingShutter::Base::Cameras
//SmartProjectionPoseFactorRollingShutter::cameras(const Values& values) const {
// assert(world_P_body_keys_.size() == K_all_.size());
// assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
// Base::Cameras cameras;
// for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
// Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_[i]);
// Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
// Pose3 w_P_cam = w_P_body.compose(body_P_cam);
// cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));
// }
// return cameras;
//}
} // \ namespace gtsam

View File

@ -38,19 +38,22 @@ namespace gtsam {
* @addtogroup SLAM
*/
template<class CALIBRATION>
class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
PinholePose<CALIBRATION> > {
protected:
/// shared pointer to calibration object (one for each observation)
std::vector<boost::shared_ptr<CALIBRATION> > K_all_;
// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
std::vector<std::pair<Key,Key>> world_P_body_key_pairs_;
/// The keys of the pose of the body (with respect to an external world frame): two consecutive poses for each observation
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
/// interpolation factor (one for each observation) to interpolate between pair of consecutive poses
std::vector<double> gammas_;
/// Pose of the camera in the body frame
std::vector<Pose3> body_P_sensors_; ///< Pose of the camera in the body frame
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
@ -77,7 +80,8 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
SmartProjectionPoseFactorRollingShutter(
const SharedNoiseModel& sharedNoiseModel,
const SmartProjectionParams& params = SmartProjectionParams())
: Base(sharedNoiseModel, params) {}
: Base(sharedNoiseModel, params) {
}
/** Virtual destructor */
~SmartProjectionPoseFactorRollingShutter() override = default;
@ -91,24 +95,28 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
* @param gamma in [0,1] is the interpolation factor, such that if gamma = 0 the interpolated pose is the same as world_P_body_key
* @param K is the (fixed) camera intrinsic calibration
*/
void add(const Point2& measured,
const Key& world_P_body_key1,
const Key& world_P_body_key2,
const double& gamma,
const boost::shared_ptr<CALIBRATION>& K){
void add(const Point2& measured, const Key& world_P_body_key1,
const Key& world_P_body_key2, const double& gamma,
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) {
// store measurements in base class (note: we only store the first key there)
Base::add(measured, world_P_body_key1);
// but we also store the extrinsic calibration keys in the same order
world_P_body_key_pairs_.push_back(std::make_pair(world_P_body_key1,world_P_body_key2));
world_P_body_key_pairs_.push_back(
std::make_pair(world_P_body_key1, world_P_body_key2));
// pose keys are assumed to be unique, so we avoid duplicates here
if(std::find( this->keys_.begin(), this->keys_.end(), world_P_body_key1) == this->keys_.end())
this->keys_.push_back(world_P_body_key1); // add only unique keys
if(std::find( this->keys_.begin(), this->keys_.end(), world_P_body_key2) == this->keys_.end())
this->keys_.push_back(world_P_body_key2); // add only unique keys
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1)
== this->keys_.end())
this->keys_.push_back(world_P_body_key1); // add only unique keys
if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2)
== this->keys_.end())
this->keys_.push_back(world_P_body_key2); // add only unique keys
// store fixed calibration
K_all_.push_back(K);
// store extrinsics of the camera
body_P_sensors_.push_back(body_P_sensor);
}
/**
@ -118,23 +126,55 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
* @param Ks vector of intrinsic calibration objects
*/
// void add(const std::vector<Point2>& measurements,
// const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
// const std::vector<double>& gammas,
// const std::vector<boost::shared_ptr<CALIBRATION>>& Ks);
void add(const std::vector<Point2>& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& gammas,
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
const std::vector<Pose3> body_P_sensors) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == gammas.size());
assert(world_P_body_key_pairs.size() == Ks.size());
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], world_P_body_key_pairs[i].first,
world_P_body_key_pairs[i].second, gammas[i], Ks[i],
body_P_sensors[i]);
}
}
/**
* Variant of the previous one in which we include a set of measurements with
* the same calibration
* the same (intrinsic and extrinsic) calibration
* @param measurements vector of the 2m dimensional location of the projection
* of a single landmark in the m views (the measurements)
* @param world_P_body_key_pairs vector of (1 for each view) containing the pair of poses from which each view can be interpolated
* @param K the (known) camera calibration (same for all measurements)
*/
// void add(const std::vector<Point2>& measurements,
// const std::vector<std::pair<Key,Key>>& world_P_body_key_pairs,
// const std::vector<double>& gammas,
// const boost::shared_ptr<CALIBRATION>& K);
void add(const std::vector<Point2>& measurements,
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
const std::vector<double>& gammas,
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor) {
assert(world_P_body_key_pairs.size() == measurements.size());
assert(world_P_body_key_pairs.size() == gammas.size());
for (size_t i = 0; i < measurements.size(); i++) {
add(measurements[i], world_P_body_key_pairs[i].first,
world_P_body_key_pairs[i].second, gammas[i], K, body_P_sensor);
}
}
/// return the calibration object
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
return K_all_;
}
/// return the interpolation factors gammas
const std::vector<double> getGammas() const {
return gammas_;
}
/// return the interpolation factors gammas
const std::vector<Pose3> body_P_sensors() const {
return body_P_sensors_;
}
/**
* print
@ -142,24 +182,38 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const override;
DefaultKeyFormatter) const override {
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
for (size_t i = 0; i < K_all_.size(); i++) {
std::cout << "-- Measurement nr " << i << std::endl;
std::cout << " pose1 key: "
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
std::cout << " pose2 key: "
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
std::cout << " gamma: " << gammas_[i] << std::endl;
K_all_[i]->print("calibration = ");
}
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const SmartProjectionPoseFactorRollingShutter<CALIBRATION>* e =
dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CALIBRATION>*>(&p);
/// equals
const std::vector<double> getGammas() const {
return gammas_;
return e && Base::equals(p, tol) && K_all_ == e->calibration()
&& gammas_ == e->getGammas() && body_P_sensors_ == e->body_P_sensors();
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override;
/** return the calibration object */
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
return K_all_;
double error(const Values& values) const override {
if (this->active(values)) {
return this->totalReprojectionError(cameras(values));
} else { // else of active flag
return 0.0;
}
}
/**
@ -169,12 +223,18 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
* @return Cameras
*/
typename Base::Cameras cameras(const Values& values) const override {
assert(world_P_body_keys_.size() == K_all_.size());
assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
typename Base::Cameras cameras;
for (const Key& k : this->keys_) {
// const Pose3 world_P_sensor_k =
// Base::body_P_sensor_ ? values.at<Pose3>(k) * *Base::body_P_sensor_
// : values.at<Pose3>(k);
// cameras.emplace_back(world_P_sensor_k, K_);
for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) {
Pose3 w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
Pose3 w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
double interpolationFactor = gammas_[i];
// get interpolated pose:
Pose3 w_P_body = w_P_body1.interpolateRt(w_P_body2, interpolationFactor);
Pose3 body_P_cam = body_P_sensors_[i];
Pose3 w_P_cam = w_P_body.compose(body_P_cam);
cameras.emplace_back(w_P_cam, K_all_[i]);
}
return cameras;
}
@ -225,7 +285,6 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
// }
// }
// }
/// linearize and return a Hessianfactor that is an approximation of error(p)
// boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
// const Values& values, const double lambda = 0.0, bool diagonalDamping =
@ -350,7 +409,6 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
// return boost::make_shared < RegularHessianFactor<DimPose>
// > ( this->keys_, augmentedHessianUniqueKeys);
// }
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
@ -379,7 +437,7 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(K_all_);
}
@ -388,8 +446,8 @@ class SmartProjectionPoseFactorRollingShutter: public SmartProjectionFactor<
/// traits
template<class CALIBRATION>
struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > : public Testable<
SmartProjectionPoseFactorRollingShutter<CALIBRATION> > {
struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > :
public Testable<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > {
};
} // namespace gtsam