Some modernization
parent
7e8095c2ee
commit
8256a6a5d2
|
@ -18,66 +18,13 @@
|
|||
|
||||
#include <gtsam/geometry/Sphere2.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <cstdio>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
Sphere2::~Sphere2() {
|
||||
}
|
||||
|
||||
Sphere2 Sphere2::retract(const Vector& v) const {
|
||||
|
||||
// Get the vector form of the point and the basis matrix
|
||||
Vector p = Point3::Logmap(p_);
|
||||
Vector axis;
|
||||
Matrix B = getBasis(&axis);
|
||||
|
||||
// Compute the 3D ξ^ vector
|
||||
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
||||
Vector newPoint = p + xi_hat;
|
||||
|
||||
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
|
||||
// putting it onto the unit circle
|
||||
Vector projected = newPoint / newPoint.norm();
|
||||
|
||||
#ifdef DEBUG_SPHERE2_RETRACT
|
||||
cout << "retract output for Matlab visualization (copy/paste =/): \n";
|
||||
cout << "p = [" << p.transpose() << "];\n";
|
||||
cout << "b1 = [" << B.col(0).transpose() << "];\n";
|
||||
cout << "b2 = [" << B.col(1).transpose() << "];\n";
|
||||
cout << "axis = [" << axis.transpose() << "];\n";
|
||||
cout << "xi_hat = [" << xi_hat.transpose() << "];\n";
|
||||
cout << "newPoint = [" << newPoint.transpose() << "];\n";
|
||||
cout << "projected = [" << projected.transpose() << "];\n";
|
||||
#endif
|
||||
|
||||
Sphere2 result(Point3::Expmap(projected));
|
||||
return result;
|
||||
}
|
||||
|
||||
Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
||||
|
||||
// Make sure that the angle different between x and y is less than 90. Otherwise,
|
||||
// we can project x + ξ^ from the tangent space at x to y.
|
||||
double cosAngle = y.p_.dot(p_);
|
||||
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
|
||||
|
||||
// Get the basis matrix
|
||||
Matrix B = getBasis();
|
||||
|
||||
// Create the vector forms of p and q (the Point3 of y).
|
||||
Vector p = Point3::Logmap(p_);
|
||||
Vector q = Point3::Logmap(y.p_);
|
||||
|
||||
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
|
||||
double alpha = p.transpose() * q;
|
||||
assert(alpha != 0.0);
|
||||
Matrix coeffs = (B.transpose() * q) / alpha;
|
||||
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Sphere2::getBasis(Vector* axisOutput) const {
|
||||
|
||||
// Get the axis of rotation with the minimum projected length of the point
|
||||
|
@ -107,4 +54,57 @@ Matrix Sphere2::getBasis(Vector* axisOutput) const {
|
|||
return basis;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// The print fuction
|
||||
void Sphere2::print(const std::string& s) const {
|
||||
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
|
||||
p_.z());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Sphere2 Sphere2::retract(const Vector& v) const {
|
||||
|
||||
// If we had a 3D point, we could just add and normalize, as in Absil
|
||||
// Point3 newPoint = p_ + z;
|
||||
|
||||
// Get the vector form of the point and the basis matrix
|
||||
Vector p = Point3::Logmap(p_);
|
||||
Vector axis;
|
||||
Matrix B = getBasis(&axis);
|
||||
|
||||
// Compute the 3D ξ^ vector
|
||||
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
||||
Vector newPoint = p + xi_hat;
|
||||
|
||||
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
|
||||
// putting it onto the unit circle
|
||||
Vector projected = newPoint / newPoint.norm();
|
||||
|
||||
return Sphere2(Point3::Expmap(projected));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
||||
|
||||
// Make sure that the angle different between x and y is less than 90. Otherwise,
|
||||
// we can project x + ξ^ from the tangent space at x to y.
|
||||
double cosAngle = y.p_.dot(p_);
|
||||
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
|
||||
|
||||
// Get the basis matrix
|
||||
Matrix B = getBasis();
|
||||
|
||||
// Create the vector forms of p and q (the Point3 of y).
|
||||
Vector p = Point3::Logmap(p_);
|
||||
Vector q = Point3::Logmap(y.p_);
|
||||
|
||||
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
|
||||
double alpha = p.transpose() * q;
|
||||
assert(alpha != 0.0);
|
||||
Matrix coeffs = (B.transpose() * q) / alpha;
|
||||
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
|
||||
return result;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
}
|
||||
|
|
|
@ -24,13 +24,20 @@ namespace gtsam {
|
|||
|
||||
/// Represents a 3D point on a unit sphere. The Sphere2 with the 3D ξ^ variable and two
|
||||
/// coefficients ξ_1 and ξ_2 that scale the 3D basis vectors of the tangent space.
|
||||
struct Sphere2 {
|
||||
class Sphere2 {
|
||||
|
||||
gtsam::Point3 p_; ///< The location of the point on the unit sphere
|
||||
private:
|
||||
|
||||
Point3 p_; ///< The location of the point on the unit sphere
|
||||
|
||||
/// Returns the axis of rotations
|
||||
Matrix getBasis(Vector* axisOutput = NULL) const;
|
||||
|
||||
public:
|
||||
|
||||
/// The constructors
|
||||
Sphere2() :
|
||||
p_(gtsam::Point3(1.0, 0.0, 0.0)) {
|
||||
p_(Point3(1.0, 0.0, 0.0)) {
|
||||
}
|
||||
|
||||
/// Copy constructor
|
||||
|
@ -39,10 +46,11 @@ struct Sphere2 {
|
|||
}
|
||||
|
||||
/// Destructor
|
||||
~Sphere2();
|
||||
~Sphere2() {
|
||||
}
|
||||
|
||||
/// Field constructor
|
||||
Sphere2(const gtsam::Point3& p) {
|
||||
Sphere2(const Point3& p) {
|
||||
p_ = p / p.norm();
|
||||
}
|
||||
|
||||
|
@ -50,10 +58,7 @@ struct Sphere2 {
|
|||
/// @{
|
||||
|
||||
/// The print fuction
|
||||
void print(const std::string& s = std::string()) const {
|
||||
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
|
||||
p_.z());
|
||||
}
|
||||
void print(const std::string& s = std::string()) const;
|
||||
|
||||
/// The equals function with tolerance
|
||||
bool equals(const Sphere2& s, double tol = 1e-9) const {
|
||||
|
@ -75,15 +80,13 @@ struct Sphere2 {
|
|||
}
|
||||
|
||||
/// The retract function
|
||||
Sphere2 retract(const gtsam::Vector& v) const;
|
||||
Sphere2 retract(const Vector& v) const;
|
||||
|
||||
/// The local coordinates function
|
||||
gtsam::Vector localCoordinates(const Sphere2& s) const;
|
||||
Vector localCoordinates(const Sphere2& s) const;
|
||||
|
||||
/// @}
|
||||
|
||||
/// Returns the axis of rotations
|
||||
gtsam::Matrix getBasis(gtsam::Vector* axisOutput = NULL) const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue