Some modernization

release/4.3a0
Frank Dellaert 2013-12-17 01:52:37 +00:00
parent 7e8095c2ee
commit 8256a6a5d2
2 changed files with 71 additions and 68 deletions

View File

@ -18,66 +18,13 @@
#include <gtsam/geometry/Sphere2.h>
#include <gtsam/geometry/Point2.h>
#include <cstdio>
using namespace std;
namespace gtsam {
Sphere2::~Sphere2() {
}
Sphere2 Sphere2::retract(const Vector& v) const {
// Get the vector form of the point and the basis matrix
Vector p = Point3::Logmap(p_);
Vector axis;
Matrix B = getBasis(&axis);
// Compute the 3D ξ^ vector
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
Vector newPoint = p + xi_hat;
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
// putting it onto the unit circle
Vector projected = newPoint / newPoint.norm();
#ifdef DEBUG_SPHERE2_RETRACT
cout << "retract output for Matlab visualization (copy/paste =/): \n";
cout << "p = [" << p.transpose() << "];\n";
cout << "b1 = [" << B.col(0).transpose() << "];\n";
cout << "b2 = [" << B.col(1).transpose() << "];\n";
cout << "axis = [" << axis.transpose() << "];\n";
cout << "xi_hat = [" << xi_hat.transpose() << "];\n";
cout << "newPoint = [" << newPoint.transpose() << "];\n";
cout << "projected = [" << projected.transpose() << "];\n";
#endif
Sphere2 result(Point3::Expmap(projected));
return result;
}
Vector Sphere2::localCoordinates(const Sphere2& y) const {
// Make sure that the angle different between x and y is less than 90. Otherwise,
// we can project x + ξ^ from the tangent space at x to y.
double cosAngle = y.p_.dot(p_);
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
// Get the basis matrix
Matrix B = getBasis();
// Create the vector forms of p and q (the Point3 of y).
Vector p = Point3::Logmap(p_);
Vector q = Point3::Logmap(y.p_);
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
double alpha = p.transpose() * q;
assert(alpha != 0.0);
Matrix coeffs = (B.transpose() * q) / alpha;
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
return result;
}
/* ************************************************************************* */
Matrix Sphere2::getBasis(Vector* axisOutput) const {
// Get the axis of rotation with the minimum projected length of the point
@ -107,4 +54,57 @@ Matrix Sphere2::getBasis(Vector* axisOutput) const {
return basis;
}
/* ************************************************************************* */
/// The print fuction
void Sphere2::print(const std::string& s) const {
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
p_.z());
}
/* ************************************************************************* */
Sphere2 Sphere2::retract(const Vector& v) const {
// If we had a 3D point, we could just add and normalize, as in Absil
// Point3 newPoint = p_ + z;
// Get the vector form of the point and the basis matrix
Vector p = Point3::Logmap(p_);
Vector axis;
Matrix B = getBasis(&axis);
// Compute the 3D ξ^ vector
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
Vector newPoint = p + xi_hat;
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
// putting it onto the unit circle
Vector projected = newPoint / newPoint.norm();
return Sphere2(Point3::Expmap(projected));
}
/* ************************************************************************* */
Vector Sphere2::localCoordinates(const Sphere2& y) const {
// Make sure that the angle different between x and y is less than 90. Otherwise,
// we can project x + ξ^ from the tangent space at x to y.
double cosAngle = y.p_.dot(p_);
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
// Get the basis matrix
Matrix B = getBasis();
// Create the vector forms of p and q (the Point3 of y).
Vector p = Point3::Logmap(p_);
Vector q = Point3::Logmap(y.p_);
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
double alpha = p.transpose() * q;
assert(alpha != 0.0);
Matrix coeffs = (B.transpose() * q) / alpha;
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
return result;
}
/* ************************************************************************* */
}

View File

@ -24,13 +24,20 @@ namespace gtsam {
/// Represents a 3D point on a unit sphere. The Sphere2 with the 3D ξ^ variable and two
/// coefficients ξ_1 and ξ_2 that scale the 3D basis vectors of the tangent space.
struct Sphere2 {
class Sphere2 {
gtsam::Point3 p_; ///< The location of the point on the unit sphere
private:
Point3 p_; ///< The location of the point on the unit sphere
/// Returns the axis of rotations
Matrix getBasis(Vector* axisOutput = NULL) const;
public:
/// The constructors
Sphere2() :
p_(gtsam::Point3(1.0, 0.0, 0.0)) {
p_(Point3(1.0, 0.0, 0.0)) {
}
/// Copy constructor
@ -39,10 +46,11 @@ struct Sphere2 {
}
/// Destructor
~Sphere2();
~Sphere2() {
}
/// Field constructor
Sphere2(const gtsam::Point3& p) {
Sphere2(const Point3& p) {
p_ = p / p.norm();
}
@ -50,10 +58,7 @@ struct Sphere2 {
/// @{
/// The print fuction
void print(const std::string& s = std::string()) const {
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
p_.z());
}
void print(const std::string& s = std::string()) const;
/// The equals function with tolerance
bool equals(const Sphere2& s, double tol = 1e-9) const {
@ -75,15 +80,13 @@ struct Sphere2 {
}
/// The retract function
Sphere2 retract(const gtsam::Vector& v) const;
Sphere2 retract(const Vector& v) const;
/// The local coordinates function
gtsam::Vector localCoordinates(const Sphere2& s) const;
Vector localCoordinates(const Sphere2& s) const;
/// @}
/// Returns the axis of rotations
gtsam::Matrix getBasis(gtsam::Vector* axisOutput = NULL) const;
};
} // namespace gtsam