Some modernization
parent
7e8095c2ee
commit
8256a6a5d2
|
@ -18,66 +18,13 @@
|
||||||
|
|
||||||
#include <gtsam/geometry/Sphere2.h>
|
#include <gtsam/geometry/Sphere2.h>
|
||||||
#include <gtsam/geometry/Point2.h>
|
#include <gtsam/geometry/Point2.h>
|
||||||
|
#include <cstdio>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
Sphere2::~Sphere2() {
|
/* ************************************************************************* */
|
||||||
}
|
|
||||||
|
|
||||||
Sphere2 Sphere2::retract(const Vector& v) const {
|
|
||||||
|
|
||||||
// Get the vector form of the point and the basis matrix
|
|
||||||
Vector p = Point3::Logmap(p_);
|
|
||||||
Vector axis;
|
|
||||||
Matrix B = getBasis(&axis);
|
|
||||||
|
|
||||||
// Compute the 3D ξ^ vector
|
|
||||||
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
|
||||||
Vector newPoint = p + xi_hat;
|
|
||||||
|
|
||||||
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
|
|
||||||
// putting it onto the unit circle
|
|
||||||
Vector projected = newPoint / newPoint.norm();
|
|
||||||
|
|
||||||
#ifdef DEBUG_SPHERE2_RETRACT
|
|
||||||
cout << "retract output for Matlab visualization (copy/paste =/): \n";
|
|
||||||
cout << "p = [" << p.transpose() << "];\n";
|
|
||||||
cout << "b1 = [" << B.col(0).transpose() << "];\n";
|
|
||||||
cout << "b2 = [" << B.col(1).transpose() << "];\n";
|
|
||||||
cout << "axis = [" << axis.transpose() << "];\n";
|
|
||||||
cout << "xi_hat = [" << xi_hat.transpose() << "];\n";
|
|
||||||
cout << "newPoint = [" << newPoint.transpose() << "];\n";
|
|
||||||
cout << "projected = [" << projected.transpose() << "];\n";
|
|
||||||
#endif
|
|
||||||
|
|
||||||
Sphere2 result(Point3::Expmap(projected));
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
|
||||||
|
|
||||||
// Make sure that the angle different between x and y is less than 90. Otherwise,
|
|
||||||
// we can project x + ξ^ from the tangent space at x to y.
|
|
||||||
double cosAngle = y.p_.dot(p_);
|
|
||||||
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
|
|
||||||
|
|
||||||
// Get the basis matrix
|
|
||||||
Matrix B = getBasis();
|
|
||||||
|
|
||||||
// Create the vector forms of p and q (the Point3 of y).
|
|
||||||
Vector p = Point3::Logmap(p_);
|
|
||||||
Vector q = Point3::Logmap(y.p_);
|
|
||||||
|
|
||||||
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
|
|
||||||
double alpha = p.transpose() * q;
|
|
||||||
assert(alpha != 0.0);
|
|
||||||
Matrix coeffs = (B.transpose() * q) / alpha;
|
|
||||||
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
Matrix Sphere2::getBasis(Vector* axisOutput) const {
|
Matrix Sphere2::getBasis(Vector* axisOutput) const {
|
||||||
|
|
||||||
// Get the axis of rotation with the minimum projected length of the point
|
// Get the axis of rotation with the minimum projected length of the point
|
||||||
|
@ -107,4 +54,57 @@ Matrix Sphere2::getBasis(Vector* axisOutput) const {
|
||||||
return basis;
|
return basis;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
/// The print fuction
|
||||||
|
void Sphere2::print(const std::string& s) const {
|
||||||
|
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
|
||||||
|
p_.z());
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Sphere2 Sphere2::retract(const Vector& v) const {
|
||||||
|
|
||||||
|
// If we had a 3D point, we could just add and normalize, as in Absil
|
||||||
|
// Point3 newPoint = p_ + z;
|
||||||
|
|
||||||
|
// Get the vector form of the point and the basis matrix
|
||||||
|
Vector p = Point3::Logmap(p_);
|
||||||
|
Vector axis;
|
||||||
|
Matrix B = getBasis(&axis);
|
||||||
|
|
||||||
|
// Compute the 3D ξ^ vector
|
||||||
|
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
||||||
|
Vector newPoint = p + xi_hat;
|
||||||
|
|
||||||
|
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
|
||||||
|
// putting it onto the unit circle
|
||||||
|
Vector projected = newPoint / newPoint.norm();
|
||||||
|
|
||||||
|
return Sphere2(Point3::Expmap(projected));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
||||||
|
|
||||||
|
// Make sure that the angle different between x and y is less than 90. Otherwise,
|
||||||
|
// we can project x + ξ^ from the tangent space at x to y.
|
||||||
|
double cosAngle = y.p_.dot(p_);
|
||||||
|
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
|
||||||
|
|
||||||
|
// Get the basis matrix
|
||||||
|
Matrix B = getBasis();
|
||||||
|
|
||||||
|
// Create the vector forms of p and q (the Point3 of y).
|
||||||
|
Vector p = Point3::Logmap(p_);
|
||||||
|
Vector q = Point3::Logmap(y.p_);
|
||||||
|
|
||||||
|
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
|
||||||
|
double alpha = p.transpose() * q;
|
||||||
|
assert(alpha != 0.0);
|
||||||
|
Matrix coeffs = (B.transpose() * q) / alpha;
|
||||||
|
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -24,13 +24,20 @@ namespace gtsam {
|
||||||
|
|
||||||
/// Represents a 3D point on a unit sphere. The Sphere2 with the 3D ξ^ variable and two
|
/// Represents a 3D point on a unit sphere. The Sphere2 with the 3D ξ^ variable and two
|
||||||
/// coefficients ξ_1 and ξ_2 that scale the 3D basis vectors of the tangent space.
|
/// coefficients ξ_1 and ξ_2 that scale the 3D basis vectors of the tangent space.
|
||||||
struct Sphere2 {
|
class Sphere2 {
|
||||||
|
|
||||||
gtsam::Point3 p_; ///< The location of the point on the unit sphere
|
private:
|
||||||
|
|
||||||
|
Point3 p_; ///< The location of the point on the unit sphere
|
||||||
|
|
||||||
|
/// Returns the axis of rotations
|
||||||
|
Matrix getBasis(Vector* axisOutput = NULL) const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
/// The constructors
|
/// The constructors
|
||||||
Sphere2() :
|
Sphere2() :
|
||||||
p_(gtsam::Point3(1.0, 0.0, 0.0)) {
|
p_(Point3(1.0, 0.0, 0.0)) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Copy constructor
|
/// Copy constructor
|
||||||
|
@ -39,10 +46,11 @@ struct Sphere2 {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Destructor
|
/// Destructor
|
||||||
~Sphere2();
|
~Sphere2() {
|
||||||
|
}
|
||||||
|
|
||||||
/// Field constructor
|
/// Field constructor
|
||||||
Sphere2(const gtsam::Point3& p) {
|
Sphere2(const Point3& p) {
|
||||||
p_ = p / p.norm();
|
p_ = p / p.norm();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -50,10 +58,7 @@ struct Sphere2 {
|
||||||
/// @{
|
/// @{
|
||||||
|
|
||||||
/// The print fuction
|
/// The print fuction
|
||||||
void print(const std::string& s = std::string()) const {
|
void print(const std::string& s = std::string()) const;
|
||||||
printf("%s(x, y, z): (%.3lf, %.3lf, %.3lf)\n", s.c_str(), p_.x(), p_.y(),
|
|
||||||
p_.z());
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The equals function with tolerance
|
/// The equals function with tolerance
|
||||||
bool equals(const Sphere2& s, double tol = 1e-9) const {
|
bool equals(const Sphere2& s, double tol = 1e-9) const {
|
||||||
|
@ -75,15 +80,13 @@ struct Sphere2 {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The retract function
|
/// The retract function
|
||||||
Sphere2 retract(const gtsam::Vector& v) const;
|
Sphere2 retract(const Vector& v) const;
|
||||||
|
|
||||||
/// The local coordinates function
|
/// The local coordinates function
|
||||||
gtsam::Vector localCoordinates(const Sphere2& s) const;
|
Vector localCoordinates(const Sphere2& s) const;
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
/// Returns the axis of rotations
|
|
||||||
gtsam::Matrix getBasis(gtsam::Vector* axisOutput = NULL) const;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
Loading…
Reference in New Issue