From 82480fe2383be600069911523e954da6a10f3912 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Mon, 5 Jun 2023 15:39:01 -0400 Subject: [PATCH] added more tests for basis factors --- gtsam/basis/tests/testBasisFactors.cpp | 2 + gtsam/basis/tests/testChebyshev2.cpp | 55 ++++++++++++++++++++++---- 2 files changed, 50 insertions(+), 7 deletions(-) diff --git a/gtsam/basis/tests/testBasisFactors.cpp b/gtsam/basis/tests/testBasisFactors.cpp index 18a389da5..703830b8d 100644 --- a/gtsam/basis/tests/testBasisFactors.cpp +++ b/gtsam/basis/tests/testBasisFactors.cpp @@ -170,6 +170,8 @@ TEST(BasisFactors, ManifoldEvaluationFactor) { LevenbergMarquardtOptimizer(graph, initial, parameters).optimize(); EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9); + // Check Jacobians + EXPECT_CORRECT_FACTOR_JACOBIANS(factor, initial, 1e-7, 1e-5); } //****************************************************************************** diff --git a/gtsam/basis/tests/testChebyshev2.cpp b/gtsam/basis/tests/testChebyshev2.cpp index 56a79a38a..e2f01e8af 100644 --- a/gtsam/basis/tests/testChebyshev2.cpp +++ b/gtsam/basis/tests/testChebyshev2.cpp @@ -17,14 +17,15 @@ * methods */ -#include +#include +#include #include #include #include +#include #include -#include -#include +#include #include using namespace std; @@ -119,8 +120,9 @@ TEST(Chebyshev2, InterpolateVector) { EXPECT(assert_equal(expected, fx(X, actualH), 1e-9)); // Check derivative - std::function)> f = std::bind( - &Chebyshev2::VectorEvaluationFunctor<2>::operator(), fx, std::placeholders::_1, nullptr); + std::function)> f = + std::bind(&Chebyshev2::VectorEvaluationFunctor<2>::operator(), fx, + std::placeholders::_1, nullptr); Matrix numericalH = numericalDerivative11, 2 * N>(f, X); EXPECT(assert_equal(numericalH, actualH, 1e-9)); @@ -138,10 +140,49 @@ TEST(Chebyshev2, InterpolatePose2) { Vector xi(3); xi << t, 0, 0.1; + Eigen::Matrix actualH(3, 3 * N); + Chebyshev2::ManifoldEvaluationFunctor fx(N, t, a, b); // We use xi as canonical coordinates via exponential map Pose2 expected = Pose2::ChartAtOrigin::Retract(xi); - EXPECT(assert_equal(expected, fx(X))); + EXPECT(assert_equal(expected, fx(X, actualH))); + + // Check derivative + std::function)> f = + std::bind(&Chebyshev2::ManifoldEvaluationFunctor::operator(), fx, + std::placeholders::_1, nullptr); + Matrix numericalH = + numericalDerivative11, 3 * N>(f, X); + EXPECT(assert_equal(numericalH, actualH, 1e-9)); +} + +//****************************************************************************** +// Interpolating poses using the exponential map +TEST(Chebyshev2, InterpolatePose3) { + double a = 10, b = 100; + double t = Chebyshev2::Points(N, a, b)(11); + + Rot3 R = Rot3::Ypr(-2.21366492e-05, -9.35353636e-03, -5.90463598e-04); + Pose3 pose(R, Point3(1, 2, 3)); + + Vector6 xi = Pose3::ChartAtOrigin::Local(pose); + Eigen::Matrix actualH(6, 6 * N); + + ParameterMatrix<6> X(N); + X.col(11) = xi; + + Chebyshev2::ManifoldEvaluationFunctor fx(N, t, a, b); + // We use xi as canonical coordinates via exponential map + Pose3 expected = Pose3::ChartAtOrigin::Retract(xi); + EXPECT(assert_equal(expected, fx(X, actualH))); + + // Check derivative + std::function)> f = + std::bind(&Chebyshev2::ManifoldEvaluationFunctor::operator(), fx, + std::placeholders::_1, nullptr); + Matrix numericalH = + numericalDerivative11, 6 * N>(f, X); + EXPECT(assert_equal(numericalH, actualH, 1e-8)); } //****************************************************************************** @@ -149,7 +190,7 @@ TEST(Chebyshev2, Decomposition) { // Create example sequence Sequence sequence; for (size_t i = 0; i < 16; i++) { - double x = (1.0/ 16)*i - 0.99, y = x; + double x = (1.0 / 16) * i - 0.99, y = x; sequence[x] = y; }