release/4.3a0
Frank Dellaert 2024-10-23 23:36:10 -07:00
parent 984232defb
commit 82224a611b
2 changed files with 149 additions and 110 deletions

View File

@ -0,0 +1,133 @@
/*
* @file FundamentalMatrix.cpp
* @brief FundamentalMatrix classes
* @author Frank Dellaert
* @date Oct 23, 2024
*/
#include <gtsam/geometry/FundamentalMatrix.h>
namespace gtsam {
GeneralFundamentalMatrix::GeneralFundamentalMatrix(const Matrix3& F) {
// Perform SVD
Eigen::JacobiSVD<Matrix3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
// Extract U and V
Matrix3 U = svd.matrixU();
Matrix3 V = svd.matrixV();
Vector3 singularValues = svd.singularValues();
// Scale the singular values
double scale = singularValues(0);
if (scale != 0) {
singularValues /= scale; // Normalize the first singular value to 1.0
}
// Check if the third singular value is close to zero (valid F condition)
if (std::abs(singularValues(2)) > 1e-9) {
throw std::invalid_argument(
"The input matrix does not represent a valid fundamental matrix.");
}
// Ensure the second singular value is recorded as s
s_ = singularValues(1);
// Check if U is a reflection
if (U.determinant() < 0) {
U = -U;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Check if V is a reflection
if (V.determinant() < 0) {
V = -V;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Assign the rotations
U_ = Rot3(U);
V_ = Rot3(V);
}
Matrix3 GeneralFundamentalMatrix::matrix() const {
return U_.matrix() * Vector3(1, s_, 0).asDiagonal() * V_.transpose().matrix();
}
void GeneralFundamentalMatrix::print(const std::string& s) const {
std::cout << s << "U:\n"
<< U_.matrix() << "\ns: " << s_ << "\nV:\n"
<< V_.matrix() << std::endl;
}
bool GeneralFundamentalMatrix::equals(const GeneralFundamentalMatrix& other,
double tol) const {
return U_.equals(other.U_, tol) && std::abs(s_ - other.s_) < tol &&
V_.equals(other.V_, tol);
}
Vector GeneralFundamentalMatrix::localCoordinates(
const GeneralFundamentalMatrix& F) const {
Vector result(7);
result.head<3>() = U_.localCoordinates(F.U_);
result(3) = F.s_ - s_; // Difference in scalar
result.tail<3>() = V_.localCoordinates(F.V_);
return result;
}
GeneralFundamentalMatrix GeneralFundamentalMatrix::retract(
const Vector& delta) const {
Rot3 newU = U_.retract(delta.head<3>());
double newS = s_ + delta(3); // Update scalar
Rot3 newV = V_.retract(delta.tail<3>());
return GeneralFundamentalMatrix(newU, newS, newV);
}
Matrix3 SimpleFundamentalMatrix::leftK() const {
Matrix3 K;
K << fa_, 0, ca_.x(), 0, fa_, ca_.y(), 0, 0, 1;
return K;
}
Matrix3 SimpleFundamentalMatrix::rightK() const {
Matrix3 K;
K << fb_, 0, cb_.x(), 0, fb_, cb_.y(), 0, 0, 1;
return K;
}
Matrix3 SimpleFundamentalMatrix::matrix() const {
return leftK().transpose().inverse() * E_.matrix() * rightK().inverse();
}
void SimpleFundamentalMatrix::print(const std::string& s) const {
std::cout << s << " E:\n"
<< E_.matrix() << "\nfa: " << fa_ << "\nfb: " << fb_
<< "\nca: " << ca_.transpose() << "\ncb: " << cb_.transpose()
<< std::endl;
}
bool SimpleFundamentalMatrix::equals(const SimpleFundamentalMatrix& other,
double tol) const {
return E_.equals(other.E_, tol) && std::abs(fa_ - other.fa_) < tol &&
std::abs(fb_ - other.fb_) < tol && (ca_ - other.ca_).norm() < tol &&
(cb_ - other.cb_).norm() < tol;
}
Vector SimpleFundamentalMatrix::localCoordinates(
const SimpleFundamentalMatrix& F) const {
Vector result(7);
result.head<5>() = E_.localCoordinates(F.E_);
result(5) = F.fa_ - fa_; // Difference in fa
result(6) = F.fb_ - fb_; // Difference in fb
return result;
}
SimpleFundamentalMatrix SimpleFundamentalMatrix::retract(
const Vector& delta) const {
EssentialMatrix newE = E_.retract(delta.head<5>());
double newFa = fa_ + delta(5); // Update fa
double newFb = fb_ + delta(6); // Update fb
return SimpleFundamentalMatrix(newE, newFa, newFb, ca_, cb_);
}
} // namespace gtsam

View File

@ -121,70 +121,19 @@ class GeneralFundamentalMatrix : public FundamentalMatrix {
*
* @param F A 3x3 matrix representing the fundamental matrix
*/
GeneralFundamentalMatrix(const Matrix3& F) {
// Perform SVD
Eigen::JacobiSVD<Matrix3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
// Extract U and V
Matrix3 U = svd.matrixU();
Matrix3 V = svd.matrixV();
Vector3 singularValues = svd.singularValues();
// Scale the singular values
double scale = singularValues(0);
if (scale != 0) {
singularValues /= scale; // Normalize the first singular value to 1.0
}
// Check if the third singular value is close to zero (valid F condition)
if (std::abs(singularValues(2)) > 1e-9) {
throw std::invalid_argument(
"The input matrix does not represent a valid fundamental matrix.");
}
// Ensure the second singular value is recorded as s
s_ = singularValues(1);
// Check if U is a reflection
if (U.determinant() < 0) {
U = -U;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Check if V is a reflection
if (V.determinant() < 0) {
V = -V;
s_ = -s_; // Change sign of scalar if U is a reflection
}
// Assign the rotations
U_ = Rot3(U);
V_ = Rot3(V);
}
GeneralFundamentalMatrix(const Matrix3& F);
/// Return the fundamental matrix representation
Matrix3 matrix() const override {
return U_.matrix() * Vector3(1, s_, 0).asDiagonal() *
V_.transpose().matrix();
}
Matrix3 matrix() const override;
/// @name Testable
/// @{
/// Print the GeneralFundamentalMatrix
void print(const std::string& s = "") const {
std::cout << s << "U:\n"
<< U_.matrix() << "\ns: " << s_ << "\nV:\n"
<< V_.matrix() << std::endl;
}
void print(const std::string& s = "") const;
/// Check if the GeneralFundamentalMatrix is equal to another within a
/// tolerance
bool equals(const GeneralFundamentalMatrix& other, double tol = 1e-9) const {
return U_.equals(other.U_, tol) && std::abs(s_ - other.s_) < tol &&
V_.equals(other.V_, tol);
}
bool equals(const GeneralFundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
@ -194,22 +143,10 @@ class GeneralFundamentalMatrix : public FundamentalMatrix {
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another GeneralFundamentalMatrix
Vector localCoordinates(const GeneralFundamentalMatrix& F) const {
Vector result(7);
result.head<3>() = U_.localCoordinates(F.U_);
result(3) = F.s_ - s_; // Difference in scalar
result.tail<3>() = V_.localCoordinates(F.V_);
return result;
}
Vector localCoordinates(const GeneralFundamentalMatrix& F) const;
/// Retract the given vector to get a new GeneralFundamentalMatrix
GeneralFundamentalMatrix retract(const Vector& delta) const {
Rot3 newU = U_.retract(delta.head<3>());
double newS = s_ + delta(3); // Update scalar
Rot3 newV = V_.retract(delta.tail<3>());
return GeneralFundamentalMatrix(newU, newS, newV);
}
GeneralFundamentalMatrix retract(const Vector& delta) const;
/// @}
};
@ -221,7 +158,7 @@ class GeneralFundamentalMatrix : public FundamentalMatrix {
* parameterization of the essential matrix and focal lengths for left and right
* cameras. Principal points are not part of the manifold but a convenience.
*/
class SimpleFundamentalMatrix : FundamentalMatrix {
class SimpleFundamentalMatrix : public FundamentalMatrix {
private:
EssentialMatrix E_; ///< Essential matrix
double fa_; ///< Focal length for left camera
@ -242,40 +179,21 @@ class SimpleFundamentalMatrix : FundamentalMatrix {
: E_(E), fa_(fa), fb_(fb), ca_(ca), cb_(cb) {}
/// Return the left calibration matrix
Matrix3 leftK() const {
Matrix3 K;
K << fa_, 0, ca_.x(), 0, fa_, ca_.y(), 0, 0, 1;
return K;
}
Matrix3 leftK() const;
/// Return the right calibration matrix
Matrix3 rightK() const {
Matrix3 K;
K << fb_, 0, cb_.x(), 0, fb_, cb_.y(), 0, 0, 1;
return K;
}
Matrix3 rightK() const;
/// Return the fundamental matrix representation
Matrix3 matrix() const override {
return leftK().transpose().inverse() * E_.matrix() * rightK().inverse();
}
Matrix3 matrix() const override;
/// @name Testable
/// @{
/// Print the SimpleFundamentalMatrix
void print(const std::string& s = "") const {
std::cout << s << " E:\n"
<< E_.matrix() << "\nfa: " << fa_ << "\nfb: " << fb_
<< "\nca: " << ca_.transpose() << "\ncb: " << cb_.transpose()
<< std::endl;
}
void print(const std::string& s = "") const;
/// Check equality within a tolerance
bool equals(const SimpleFundamentalMatrix& other, double tol = 1e-9) const {
return E_.equals(other.E_, tol) && std::abs(fa_ - other.fa_) < tol &&
std::abs(fb_ - other.fb_) < tol && (ca_ - other.ca_).norm() < tol &&
(cb_ - other.cb_).norm() < tol;
}
bool equals(const SimpleFundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
@ -284,23 +202,11 @@ class SimpleFundamentalMatrix : FundamentalMatrix {
inline static size_t Dim() { return dimension; }
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another
/// SimpleFundamentalMatrix
Vector localCoordinates(const SimpleFundamentalMatrix& F) const {
Vector result(7);
result.head<5>() = E_.localCoordinates(F.E_);
result(5) = F.fa_ - fa_; // Difference in fa
result(6) = F.fb_ - fb_; // Difference in fb
return result;
}
/// Return local coordinates with respect to another SimpleFundamentalMatrix
Vector localCoordinates(const SimpleFundamentalMatrix& F) const;
/// Retract the given vector to get a new SimpleFundamentalMatrix
SimpleFundamentalMatrix retract(const Vector& delta) const {
EssentialMatrix newE = E_.retract(delta.head<5>());
double newFa = fa_ + delta(5); // Update fa
double newFb = fb_ + delta(6); // Update fb
return SimpleFundamentalMatrix(newE, newFa, newFb, ca_, cb_);
}
SimpleFundamentalMatrix retract(const Vector& delta) const;
/// @}
};