remove unnecessary code in child class
parent
d81cd82b9a
commit
821b22f6f8
|
@ -323,40 +323,6 @@ AlgebraicDecisionTree<Key> HybridGaussianConditional::logProbability(
|
|||
return DecisionTree<Key, double>(conditionals_, probFunc);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double HybridGaussianConditional::conditionalError(
|
||||
const GaussianConditional::shared_ptr &conditional,
|
||||
const VectorValues &continuousValues) const {
|
||||
// Check if valid pointer
|
||||
if (conditional) {
|
||||
return conditional->error(continuousValues) + //
|
||||
-logConstant_ - conditional->logNormalizationConstant();
|
||||
} else {
|
||||
// If not valid, pointer, it means this conditional was pruned,
|
||||
// so we return maximum error.
|
||||
// This way the negative exponential will give
|
||||
// a probability value close to 0.0.
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
AlgebraicDecisionTree<Key> HybridGaussianConditional::errorTree(
|
||||
const VectorValues &continuousValues) const {
|
||||
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
|
||||
return conditionalError(conditional, continuousValues);
|
||||
};
|
||||
DecisionTree<Key, double> error_tree(conditionals_, errorFunc);
|
||||
return error_tree;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
double HybridGaussianConditional::error(const HybridValues &values) const {
|
||||
// Directly index to get the conditional, no need to build the whole tree.
|
||||
auto conditional = conditionals_(values.discrete());
|
||||
return conditionalError(conditional, values.continuous());
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
double HybridGaussianConditional::logProbability(
|
||||
const HybridValues &values) const {
|
||||
|
|
|
@ -174,43 +174,6 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
AlgebraicDecisionTree<Key> logProbability(
|
||||
const VectorValues &continuousValues) const;
|
||||
|
||||
/**
|
||||
* @brief Compute the error of this hybrid Gaussian conditional.
|
||||
*
|
||||
* This requires some care, as different components may have
|
||||
* different normalization constants. Let's consider p(x|y,m), where m is
|
||||
* discrete. We need the error to satisfy the invariant:
|
||||
*
|
||||
* error(x;y,m) = K - log(probability(x;y,m))
|
||||
*
|
||||
* For all x,y,m. But note that K, the (log) normalization constant defined
|
||||
* in Conditional.h, should not depend on x, y, or m, only on the parameters
|
||||
* of the density. Hence, we delegate to the underlying Gaussian
|
||||
* conditionals, indexed by m, which do satisfy:
|
||||
*
|
||||
* log(probability_m(x;y)) = K_m - error_m(x;y)
|
||||
*
|
||||
* We resolve by having K == max(K_m) and
|
||||
*
|
||||
* error(x;y,m) = error_m(x;y) + K - K_m
|
||||
*
|
||||
* which also makes error(x;y,m) >= 0 for all x,y,m.
|
||||
*
|
||||
* @param values Continuous values and discrete assignment.
|
||||
* @return double
|
||||
*/
|
||||
double error(const HybridValues &values) const override;
|
||||
|
||||
/**
|
||||
* @brief Compute error of the HybridGaussianConditional as a tree.
|
||||
*
|
||||
* @param continuousValues The continuous VectorValues.
|
||||
* @return AlgebraicDecisionTree<Key> A decision tree on the discrete keys
|
||||
* only, with the leaf values as the error for each assignment.
|
||||
*/
|
||||
virtual AlgebraicDecisionTree<Key> errorTree(
|
||||
const VectorValues &continuousValues) const override;
|
||||
|
||||
/**
|
||||
* @brief Compute the logProbability of this hybrid Gaussian conditional.
|
||||
*
|
||||
|
@ -241,10 +204,6 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
/// Check whether `given` has values for all frontal keys.
|
||||
bool allFrontalsGiven(const VectorValues &given) const;
|
||||
|
||||
/// Helper method to compute the error of a conditional.
|
||||
double conditionalError(const GaussianConditional::shared_ptr &conditional,
|
||||
const VectorValues &continuousValues) const;
|
||||
|
||||
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
|
|
Loading…
Reference in New Issue