eliminate is now const
parent
a38ebece1e
commit
81a353dd2c
|
@ -287,13 +287,13 @@ void LinearFactor::append_factor(LinearFactor::shared_ptr f, const size_t m,
|
||||||
*/
|
*/
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
pair<ConditionalGaussian::shared_ptr, LinearFactor::shared_ptr>
|
pair<ConditionalGaussian::shared_ptr, LinearFactor::shared_ptr>
|
||||||
LinearFactor::eliminate(const string& key)
|
LinearFactor::eliminate(const string& key) const
|
||||||
{
|
{
|
||||||
bool verbose = false;
|
bool verbose = false;
|
||||||
if (verbose) cout << "LinearFactor::eliminate(" << key << ")" << endl;
|
if (verbose) cout << "LinearFactor::eliminate(" << key << ")" << endl;
|
||||||
|
|
||||||
// if this factor does not involve key, we exit with empty CG and LF
|
// if this factor does not involve key, we exit with empty CG and LF
|
||||||
iterator it = As_.find(key);
|
const_iterator it = As_.find(key);
|
||||||
if (it==As_.end()) {
|
if (it==As_.end()) {
|
||||||
// Conditional Gaussian is just a parent-less node with P(x)=1
|
// Conditional Gaussian is just a parent-less node with P(x)=1
|
||||||
LinearFactor::shared_ptr lf(new LinearFactor);
|
LinearFactor::shared_ptr lf(new LinearFactor);
|
||||||
|
|
|
@ -232,7 +232,8 @@ public:
|
||||||
* @param key the key of the node to be eliminated
|
* @param key the key of the node to be eliminated
|
||||||
* @return a new factor and a conditional gaussian on the eliminated variable
|
* @return a new factor and a conditional gaussian on the eliminated variable
|
||||||
*/
|
*/
|
||||||
std::pair<boost::shared_ptr<ConditionalGaussian>, shared_ptr> eliminate(const std::string& key);
|
std::pair<boost::shared_ptr<ConditionalGaussian>, shared_ptr>
|
||||||
|
eliminate(const std::string& key) const;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Take the factor f, and append to current matrices. Not very general.
|
* Take the factor f, and append to current matrices. Not very general.
|
||||||
|
|
Loading…
Reference in New Issue