Added reference, made documentation consistent
parent
6496bd49ed
commit
814c170caa
|
|
@ -28,6 +28,25 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
|
||||
* conditionally independent sets in factor graphs: a unifying perspective based
|
||||
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
* REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
|
||||
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
|
||||
* Robotics: Science and Systems (RSS), 2015.
|
||||
*/
|
||||
|
||||
/**
|
||||
* PreintegratedCombinedMeasurements integrates the IMU measurements
|
||||
* (rotation rates and accelerations) and the corresponding covariance matrix.
|
||||
|
|
@ -35,6 +54,8 @@ namespace gtsam {
|
|||
* is done incrementally (ideally, one integrates the measurement as soon as
|
||||
* it is received from the IMU) so as to avoid costly integration at time of
|
||||
* factor construction.
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class PreintegratedCombinedMeasurements : public PreintegrationBase {
|
||||
|
||||
|
|
@ -131,22 +152,6 @@ class PreintegratedCombinedMeasurements : public PreintegrationBase {
|
|||
};
|
||||
|
||||
/**
|
||||
* @addtogroup SLAM
|
||||
*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
|
||||
* conditionally independent sets in factor graphs: a unifying perspective based
|
||||
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
** REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
*
|
||||
* CombinedImuFactor is a 6-ways factor involving previous state (pose and
|
||||
* velocity of the vehicle, as well as bias at previous time step), and current
|
||||
* state (pose, velocity, bias at current time step). Following the pre-
|
||||
|
|
@ -162,6 +167,8 @@ class PreintegratedCombinedMeasurements : public PreintegrationBase {
|
|||
* 3) The covariance matrix of the PreintegratedCombinedMeasurements preserves
|
||||
* the correlation between the bias uncertainty and the preintegrated
|
||||
* measurements uncertainty.
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class CombinedImuFactor: public NoiseModelFactor6<Pose3, Vector3, Pose3,
|
||||
Vector3, imuBias::ConstantBias, imuBias::ConstantBias> {
|
||||
|
|
|
|||
|
|
@ -28,6 +28,25 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
|
||||
* conditionally independent sets in factor graphs: a unifying perspective based
|
||||
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
* REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
|
||||
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
|
||||
* Robotics: Science and Systems (RSS), 2015.
|
||||
*/
|
||||
|
||||
/**
|
||||
* PreintegratedIMUMeasurements accumulates (integrates) the IMU measurements
|
||||
* (rotation rates and accelerations) and the corresponding covariance matrix.
|
||||
|
|
@ -35,6 +54,8 @@ namespace gtsam {
|
|||
* Integration is done incrementally (ideally, one integrates the measurement
|
||||
* as soon as it is received from the IMU) so as to avoid costly integration
|
||||
* at time of factor construction.
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class PreintegratedImuMeasurements: public PreintegrationBase {
|
||||
|
||||
|
|
@ -104,25 +125,6 @@ private:
|
|||
}
|
||||
};
|
||||
|
||||
/**
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
|
||||
* independent sets in factor graphs: a unifying perspective based on smart factors,
|
||||
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
** REFERENCES:
|
||||
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
|
||||
* Volume 2, 2008.
|
||||
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
|
||||
* High-Dynamic Motion in Built Environments Without Initial Conditions",
|
||||
* TRO, 28(1):61-76, 2012.
|
||||
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
|
||||
* Computation of the Jacobian Matrices", Tech. Report, 2013.
|
||||
*/
|
||||
|
||||
/**
|
||||
* ImuFactor is a 5-ways factor involving previous state (pose and velocity of
|
||||
* the vehicle at previous time step), current state (pose and velocity at
|
||||
|
|
@ -132,6 +134,8 @@ private:
|
|||
* Note that this factor does not model "temporal consistency" of the biases
|
||||
* (which are usually slowly varying quantities), which is up to the caller.
|
||||
* See also CombinedImuFactor for a class that does this for you.
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class ImuFactor: public NoiseModelFactor5<Pose3, Vector3, Pose3, Vector3,
|
||||
imuBias::ConstantBias> {
|
||||
|
|
|
|||
Loading…
Reference in New Issue