More modular
parent
423e447de0
commit
8148b78af6
|
@ -1,13 +1,31 @@
|
|||
# gtsam_plotly.py
|
||||
# gtsam_plotly_modular.py
|
||||
import numpy as np
|
||||
import plotly.graph_objects as go
|
||||
from tqdm.notebook import tqdm # Progress bar
|
||||
from typing import List, Optional, Tuple, Dict, Any
|
||||
|
||||
import gtsam
|
||||
|
||||
# --- Ellipse Calculation Helpers (Mostly unchanged) ---
|
||||
|
||||
def ellipse_path(cx, cy, sizex, sizey, angle, N=60):
|
||||
"""SVG path string for an ellipse centered at (cx, cy), rotated by `angle` in degrees."""
|
||||
|
||||
def ellipse_path(
|
||||
cx: float, cy: float, sizex: float, sizey: float, angle: float, N: int = 60
|
||||
) -> str:
|
||||
"""
|
||||
Generates an SVG path string for an ellipse.
|
||||
|
||||
Args:
|
||||
cx: Center x-coordinate.
|
||||
cy: Center y-coordinate.
|
||||
sizex: Full width of the ellipse along its major axis.
|
||||
sizey: Full height of the ellipse along its minor axis.
|
||||
angle: Rotation angle in degrees.
|
||||
N: Number of points to approximate the ellipse.
|
||||
|
||||
Returns:
|
||||
SVG path string.
|
||||
"""
|
||||
angle_rad = np.radians(angle)
|
||||
t = np.linspace(0, 2 * np.pi, N)
|
||||
x = (sizex / 2) * np.cos(t)
|
||||
|
@ -24,9 +42,19 @@ def ellipse_path(cx, cy, sizex, sizey, angle, N=60):
|
|||
return path
|
||||
|
||||
|
||||
# Helper to convert GTSAM covariance to Plotly ellipse parameters
|
||||
def gtsam_cov_to_plotly_ellipse(cov_matrix, scale=2.0):
|
||||
"""Calculates ellipse parameters (angle, width, height) from a 2x2 covariance matrix."""
|
||||
def gtsam_cov_to_plotly_ellipse(
|
||||
cov_matrix: np.ndarray, scale: float = 2.0
|
||||
) -> Tuple[float, float, float]:
|
||||
"""
|
||||
Calculates ellipse parameters (angle, width, height) from a 2x2 covariance matrix.
|
||||
|
||||
Args:
|
||||
cov_matrix: The 2x2 covariance matrix (or larger, only top-left 2x2 used).
|
||||
scale: Scaling factor for the ellipse size (e.g., 2.0 for 2-sigma).
|
||||
|
||||
Returns:
|
||||
Tuple containing (angle_degrees, width, height).
|
||||
"""
|
||||
# Ensure positive definite - add small epsilon if needed
|
||||
cov = cov_matrix[:2, :2] + np.eye(2) * 1e-9
|
||||
try:
|
||||
|
@ -34,36 +62,33 @@ def gtsam_cov_to_plotly_ellipse(cov_matrix, scale=2.0):
|
|||
# Ensure eigenvalues are positive for sqrt
|
||||
eigvals = np.maximum(eigvals, 1e-9)
|
||||
except np.linalg.LinAlgError:
|
||||
# print("Warning: Covariance matrix SVD failed, using default ellipse.") # Can be verbose
|
||||
# print("Warning: Covariance matrix SVD failed, using default ellipse.") # Optional warning
|
||||
return 0, 0.1 * scale, 0.1 * scale # Default small ellipse
|
||||
|
||||
# Width/Height are 2*scale*sqrt(eigenvalue)
|
||||
width = 2 * scale * np.sqrt(eigvals[1])
|
||||
height = 2 * scale * np.sqrt(eigvals[0])
|
||||
# Width/Height are 2*scale*sqrt(eigenvalue) (using full width/height)
|
||||
width = (
|
||||
2 * scale * np.sqrt(eigvals[1])
|
||||
) # Major axis corresponds to largest eigenvalue
|
||||
height = (
|
||||
2 * scale * np.sqrt(eigvals[0])
|
||||
) # Minor axis corresponds to smallest eigenvalue
|
||||
|
||||
# Angle of the major axis (corresponding to largest eigenvalue)
|
||||
# Angle of the major axis (eigenvector corresponding to largest eigenvalue eigvals[1])
|
||||
angle_rad = np.arctan2(eigvecs[1, 1], eigvecs[0, 1])
|
||||
angle_deg = np.degrees(angle_rad)
|
||||
|
||||
return angle_deg, width, height
|
||||
|
||||
|
||||
def create_slam_animation(
|
||||
results_history, # List of gtsam.Values
|
||||
marginals_history, # List of gtsam.Marginals or None
|
||||
landmarks_gt_array, # Nx2 numpy array
|
||||
poses_gt, # List of gtsam.Pose2
|
||||
num_steps,
|
||||
world_size,
|
||||
X, # Symbol func
|
||||
L, # Symbol func
|
||||
):
|
||||
"""Creates a Plotly animation of the SLAM results."""
|
||||
print("Generating Plotly animation...")
|
||||
# --- Plotting Element Creation Helpers ---
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Add Ground Truth Landmarks (static)
|
||||
def _add_ground_truth_traces(
|
||||
fig: go.Figure, landmarks_gt_array: np.ndarray, poses_gt: List[gtsam.Pose2]
|
||||
) -> None:
|
||||
"""Adds static ground truth landmark and path traces to the figure."""
|
||||
# Ground Truth Landmarks
|
||||
if landmarks_gt_array is not None and landmarks_gt_array.size > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=landmarks_gt_array[0, :],
|
||||
|
@ -74,7 +99,8 @@ def create_slam_animation(
|
|||
)
|
||||
)
|
||||
|
||||
# Add Ground Truth Path (static)
|
||||
# Ground Truth Path
|
||||
if poses_gt:
|
||||
gt_path_x = [p.x() for p in poses_gt]
|
||||
gt_path_y = [p.y() for p in poses_gt]
|
||||
fig.add_trace(
|
||||
|
@ -87,146 +113,174 @@ def create_slam_animation(
|
|||
)
|
||||
)
|
||||
|
||||
# --- Animation Frames ---
|
||||
frames = []
|
||||
steps = list(range(num_steps + 1))
|
||||
|
||||
for k in tqdm(steps):
|
||||
frame_data = []
|
||||
step_results = results_history[k]
|
||||
step_marginals = marginals_history[k]
|
||||
def _create_ellipse_shape_dict(
|
||||
cx: float,
|
||||
cy: float,
|
||||
angle: float,
|
||||
width: float,
|
||||
height: float,
|
||||
fillcolor: str,
|
||||
line_color: str,
|
||||
name: str,
|
||||
) -> Dict[str, Any]:
|
||||
"""Creates the dictionary required for a Plotly ellipse shape."""
|
||||
return dict(
|
||||
type="path",
|
||||
path=ellipse_path(cx=cx, cy=cy, sizex=width, sizey=height, angle=angle, N=60),
|
||||
xref="x",
|
||||
yref="y",
|
||||
fillcolor=fillcolor,
|
||||
line_color=line_color,
|
||||
name=name, # Note: name isn't directly displayed for shapes, but good for metadata
|
||||
)
|
||||
|
||||
# Estimated Path up to step k
|
||||
|
||||
def _create_single_frame_data(
|
||||
k: int,
|
||||
step_results: gtsam.Values,
|
||||
step_marginals: Optional[gtsam.Marginals],
|
||||
X: callable,
|
||||
L: callable,
|
||||
ellipse_scale: float = 2.0,
|
||||
verbose: bool = False,
|
||||
) -> Tuple[List[go.Scatter], List[Dict[str, Any]]]:
|
||||
"""
|
||||
Creates the traces and shapes for a single animation frame.
|
||||
|
||||
Args:
|
||||
k: The current step index.
|
||||
step_results: gtsam.Values for this step.
|
||||
step_marginals: gtsam.Marginals for this step (or None).
|
||||
X: Symbol function for poses.
|
||||
L: Symbol function for landmarks.
|
||||
ellipse_scale: Scaling factor for covariance ellipses.
|
||||
verbose: If True, print warnings for covariance errors.
|
||||
|
||||
Returns:
|
||||
A tuple containing (list_of_traces, list_of_shapes).
|
||||
"""
|
||||
traces = []
|
||||
shapes = []
|
||||
|
||||
# 1. Estimated Path up to step k
|
||||
est_path_x = []
|
||||
est_path_y = []
|
||||
for i in range(k + 1):
|
||||
pose_key = X(i)
|
||||
if step_results.exists(
|
||||
pose_key
|
||||
): # Check if pose exists in results for this step
|
||||
if step_results.exists(pose_key):
|
||||
pose = step_results.atPose2(pose_key)
|
||||
est_path_x.append(pose.x())
|
||||
est_path_y.append(pose.y())
|
||||
|
||||
frame_data.append(
|
||||
traces.append(
|
||||
go.Scatter(
|
||||
x=est_path_x,
|
||||
y=est_path_y,
|
||||
mode="lines+markers",
|
||||
line=dict(color="red", width=2),
|
||||
marker=dict(size=4, color="red"),
|
||||
name="Path Est",
|
||||
name="Path Est", # Legend entry for the whole path
|
||||
)
|
||||
)
|
||||
|
||||
# Estimated Landmarks known at step k
|
||||
# 2. Estimated Landmarks known at step k
|
||||
est_landmarks_x = []
|
||||
est_landmarks_y = []
|
||||
landmark_keys_in_frame = []
|
||||
# Iterate through all possible landmark keys seen so far, check if present in current step's results
|
||||
all_keys = step_results.keys()
|
||||
for lm_key_val in all_keys: # Use keys() for integer keys
|
||||
if gtsam.Symbol(lm_key_val).chr() == ord("l"): # Check if symbol chr is 'l'
|
||||
lm_key = lm_key_val # Use the integer key directly
|
||||
if step_results.exists(lm_key):
|
||||
lm_pose = step_results.atPoint2(lm_key)
|
||||
est_landmarks_x.append(lm_pose[0])
|
||||
est_landmarks_y.append(lm_pose[1])
|
||||
landmark_keys_in_frame.append(lm_key)
|
||||
for key_val in all_keys:
|
||||
symbol = gtsam.Symbol(key_val)
|
||||
if symbol.chr() == ord("l"): # Check if it's a landmark symbol
|
||||
# Check existence again (though keys() implies existence)
|
||||
if step_results.exists(key_val):
|
||||
lm_point = step_results.atPoint2(key_val)
|
||||
est_landmarks_x.append(lm_point[0])
|
||||
est_landmarks_y.append(lm_point[1])
|
||||
landmark_keys_in_frame.append(key_val)
|
||||
|
||||
if est_landmarks_x:
|
||||
frame_data.append(
|
||||
traces.append(
|
||||
go.Scatter(
|
||||
x=est_landmarks_x,
|
||||
y=est_landmarks_y,
|
||||
mode="markers",
|
||||
marker=dict(color="blue", size=6, symbol="x"),
|
||||
name="Landmarks Est",
|
||||
name="Landmarks Est", # Legend entry for all estimated landmarks
|
||||
)
|
||||
)
|
||||
|
||||
# Covariance Ellipses
|
||||
shapes = [] # List to hold ellipse shapes for this frame
|
||||
# 3. Covariance Ellipses (if marginals available)
|
||||
if step_marginals is not None:
|
||||
# Current Pose Covariance Ellipse
|
||||
try:
|
||||
current_pose_key = X(k)
|
||||
if step_results.exists(current_pose_key):
|
||||
try:
|
||||
pose_cov = step_marginals.marginalCovariance(current_pose_key)
|
||||
pose_mean = step_results.atPose2(current_pose_key).translation()
|
||||
angle, width, height = gtsam_cov_to_plotly_ellipse(pose_cov)
|
||||
cx, cy = pose_mean[0], pose_mean[1]
|
||||
angle, width, height = gtsam_cov_to_plotly_ellipse(
|
||||
pose_cov, scale=ellipse_scale
|
||||
)
|
||||
shapes.append(
|
||||
dict(
|
||||
type="path",
|
||||
path=ellipse_path(
|
||||
cx=cx,
|
||||
cy=cy,
|
||||
sizex=width,
|
||||
sizey=height,
|
||||
_create_ellipse_shape_dict(
|
||||
cx=pose_mean[0],
|
||||
cy=pose_mean[1],
|
||||
angle=angle,
|
||||
N=60,
|
||||
),
|
||||
xref="x",
|
||||
yref="y",
|
||||
width=width,
|
||||
height=height,
|
||||
fillcolor="rgba(255,0,255,0.2)",
|
||||
line_color="rgba(255,0,255,0.5)",
|
||||
name=f"Pose {k} Cov",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
print(
|
||||
f"Warning: Failed getting pose {k} cov ellipse at step {k}: {e}"
|
||||
) # Can be verbose
|
||||
pass
|
||||
)
|
||||
|
||||
# Landmark Covariance Ellipses
|
||||
for lm_key in landmark_keys_in_frame:
|
||||
try:
|
||||
lm_cov = step_marginals.marginalCovariance(lm_key)
|
||||
lm_mean = step_results.atPoint2(lm_key)
|
||||
angle, width, height = gtsam_cov_to_plotly_ellipse(lm_cov)
|
||||
cx, cy = lm_mean[0], lm_mean[1]
|
||||
index = gtsam.Symbol(lm_key).index()
|
||||
angle, width, height = gtsam_cov_to_plotly_ellipse(
|
||||
lm_cov, scale=ellipse_scale
|
||||
)
|
||||
symbol = gtsam.Symbol(lm_key)
|
||||
shapes.append(
|
||||
dict(
|
||||
type="path",
|
||||
path=ellipse_path(
|
||||
cx=cx,
|
||||
cy=cy,
|
||||
sizex=width,
|
||||
sizey=height,
|
||||
_create_ellipse_shape_dict(
|
||||
cx=lm_mean[0],
|
||||
cy=lm_mean[1],
|
||||
angle=angle,
|
||||
N=60,
|
||||
),
|
||||
xref="x",
|
||||
yref="y",
|
||||
width=width,
|
||||
height=height,
|
||||
fillcolor="rgba(0,0,255,0.1)",
|
||||
line_color="rgba(0,0,255,0.3)",
|
||||
name=f"LM {index} Cov",
|
||||
name=f"LM {symbol.index()} Cov",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
index = gtsam.Symbol(lm_key).index()
|
||||
symbol = gtsam.Symbol(lm_key)
|
||||
if verbose:
|
||||
print(
|
||||
f"Warning: Failed getting landmark {index} cov ellipse at step {k}: {e}"
|
||||
) # Can be verbose
|
||||
|
||||
frames.append(
|
||||
go.Frame(data=frame_data, name=str(k), layout=go.Layout(shapes=shapes))
|
||||
f"Warning: Failed getting landmark {symbol.index()} cov ellipse at step {k}: {e}"
|
||||
)
|
||||
|
||||
# --- Set Initial State and Layout ---
|
||||
fig.update(frames=frames)
|
||||
return traces, shapes
|
||||
|
||||
# Set initial data to the first frame's data
|
||||
if frames:
|
||||
fig.add_traces(frames[0].data)
|
||||
initial_shapes = frames[0].layout.shapes if frames[0].layout else []
|
||||
else:
|
||||
initial_shapes = []
|
||||
|
||||
# Define slider
|
||||
def _configure_figure_layout(
|
||||
fig: go.Figure,
|
||||
num_steps: int,
|
||||
world_size: float,
|
||||
initial_shapes: List[Dict[str, Any]],
|
||||
) -> None:
|
||||
"""Configures the Plotly figure's layout, axes, slider, and buttons."""
|
||||
|
||||
steps = list(range(num_steps + 1))
|
||||
|
||||
# Slider
|
||||
sliders = [
|
||||
dict(
|
||||
active=0,
|
||||
|
@ -237,10 +291,12 @@ def create_slam_animation(
|
|||
label=str(k),
|
||||
method="animate",
|
||||
args=[
|
||||
[str(k)],
|
||||
[str(k)], # Frame name
|
||||
dict(
|
||||
mode="immediate",
|
||||
frame=dict(duration=100, redraw=True),
|
||||
frame=dict(
|
||||
duration=100, redraw=True
|
||||
), # Redraw needed for shapes
|
||||
transition=dict(duration=0),
|
||||
),
|
||||
],
|
||||
|
@ -250,19 +306,8 @@ def create_slam_animation(
|
|||
)
|
||||
]
|
||||
|
||||
# Update layout
|
||||
fig.update_layout(
|
||||
title="Iterative Factor Graph SLAM Animation",
|
||||
xaxis=dict(range=[-world_size / 2 - 2, world_size / 2 + 2], constrain="domain"),
|
||||
yaxis=dict(
|
||||
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
||||
scaleanchor="x",
|
||||
scaleratio=1,
|
||||
),
|
||||
width=800,
|
||||
height=800,
|
||||
hovermode="closest",
|
||||
updatemenus=[
|
||||
# Buttons
|
||||
updatemenus = [
|
||||
dict(
|
||||
type="buttons",
|
||||
showactive=False,
|
||||
|
@ -271,7 +316,7 @@ def create_slam_animation(
|
|||
label="Play",
|
||||
method="animate",
|
||||
args=[
|
||||
None,
|
||||
None, # Animate all frames
|
||||
dict(
|
||||
mode="immediate",
|
||||
frame=dict(duration=100, redraw=True),
|
||||
|
@ -279,12 +324,144 @@ def create_slam_animation(
|
|||
fromcurrent=True,
|
||||
),
|
||||
],
|
||||
)
|
||||
),
|
||||
dict(
|
||||
label="Pause",
|
||||
method="animate",
|
||||
args=[
|
||||
[None], # Stop animation
|
||||
dict(
|
||||
mode="immediate",
|
||||
frame=dict(duration=0, redraw=False),
|
||||
transition=dict(duration=0),
|
||||
),
|
||||
],
|
||||
)
|
||||
),
|
||||
],
|
||||
direction="left",
|
||||
pad={"r": 10, "t": 87},
|
||||
x=0.1,
|
||||
xanchor="right",
|
||||
y=0,
|
||||
yanchor="top",
|
||||
)
|
||||
]
|
||||
|
||||
# Layout settings
|
||||
fig.update_layout(
|
||||
title="Iterative Factor Graph SLAM Animation",
|
||||
xaxis=dict(
|
||||
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
||||
constrain="domain", # Keep aspect ratio when zooming
|
||||
),
|
||||
yaxis=dict(
|
||||
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
||||
scaleanchor="x", # Ensure square aspect ratio
|
||||
scaleratio=1,
|
||||
),
|
||||
width=800,
|
||||
height=800,
|
||||
hovermode="closest",
|
||||
updatemenus=updatemenus,
|
||||
sliders=sliders,
|
||||
shapes=initial_shapes, # Set initial shapes
|
||||
shapes=initial_shapes, # Set initial shapes from frame 0
|
||||
# Add legend if desired
|
||||
legend=dict(
|
||||
traceorder="reversed",
|
||||
title_text="Legend",
|
||||
orientation="h",
|
||||
yanchor="bottom",
|
||||
y=1.02,
|
||||
xanchor="right",
|
||||
x=1,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
# --- Main Animation Function (Orchestrator) ---
|
||||
|
||||
|
||||
def create_slam_animation(
|
||||
results_history: List[gtsam.Values],
|
||||
marginals_history: List[Optional[gtsam.Marginals]],
|
||||
num_steps: int,
|
||||
X: callable,
|
||||
L: callable,
|
||||
landmarks_gt_array: Optional[np.ndarray] = None,
|
||||
poses_gt: Optional[List[gtsam.Pose2]] = None,
|
||||
world_size: float = 20.0,
|
||||
ellipse_scale: float = 2.0,
|
||||
verbose_cov_errors: bool = False,
|
||||
) -> go.Figure:
|
||||
"""
|
||||
Creates a Plotly animation of the SLAM results in a modular way.
|
||||
|
||||
Args:
|
||||
results_history: List of gtsam.Values, one per step.
|
||||
marginals_history: List of gtsam.Marginals or None, one per step.
|
||||
num_steps: The total number of steps (results_history should have length num_steps + 1).
|
||||
X: Symbol function for poses (e.g., lambda i: gtsam.symbol('x', i)).
|
||||
L: Symbol function for landmarks (e.g., lambda j: gtsam.symbol('l', j)).
|
||||
landmarks_gt_array: Optional Nx2 numpy array of ground truth landmark positions.
|
||||
poses_gt: Optional list of gtsam.Pose2 ground truth poses.
|
||||
world_size: Approximate size of the world for axis scaling.
|
||||
ellipse_scale: Scaling factor for covariance ellipses (e.g., 2.0 for 2-sigma).
|
||||
verbose_cov_errors: If True, print warnings for covariance calculation errors.
|
||||
|
||||
Returns:
|
||||
A plotly.graph_objects.Figure containing the animation.
|
||||
"""
|
||||
print("Generating Plotly animation...")
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# 1. Add static ground truth elements
|
||||
_add_ground_truth_traces(fig, landmarks_gt_array, poses_gt)
|
||||
|
||||
# 2. Create frames for animation
|
||||
frames = []
|
||||
steps_iterable = range(num_steps + 1)
|
||||
|
||||
# Use tqdm for progress bar if available
|
||||
try:
|
||||
steps_iterable = tqdm(steps_iterable, desc="Creating Frames")
|
||||
except NameError:
|
||||
pass # tqdm not installed or not in notebook env
|
||||
|
||||
for k in steps_iterable:
|
||||
step_results = results_history[k]
|
||||
step_marginals = marginals_history[k] if marginals_history else None
|
||||
|
||||
# Create traces and shapes for this specific frame
|
||||
frame_traces, frame_shapes = _create_single_frame_data(
|
||||
k, step_results, step_marginals, X, L, ellipse_scale, verbose_cov_errors
|
||||
)
|
||||
|
||||
# Create the Plotly frame object
|
||||
frames.append(
|
||||
go.Frame(
|
||||
data=frame_traces,
|
||||
name=str(k), # Name used by slider/buttons
|
||||
layout=go.Layout(
|
||||
shapes=frame_shapes
|
||||
), # Shapes are part of layout per frame
|
||||
)
|
||||
)
|
||||
|
||||
# 3. Set initial figure state (using data from frame 0)
|
||||
if frames:
|
||||
# Add traces from the first frame as the initial state
|
||||
for trace in frames[0].data:
|
||||
fig.add_trace(trace)
|
||||
initial_shapes = frames[0].layout.shapes if frames[0].layout else []
|
||||
else:
|
||||
initial_shapes = []
|
||||
|
||||
# 4. Assign frames to the figure
|
||||
fig.update(frames=frames)
|
||||
|
||||
# 5. Configure overall layout, slider, buttons
|
||||
_configure_figure_layout(fig, num_steps, world_size, initial_shapes)
|
||||
|
||||
print("Plotly animation generated.")
|
||||
return fig
|
||||
|
|
Loading…
Reference in New Issue