remove duplicate test and focus only on direct specification
parent
987ecd4a07
commit
80d9a5a65f
|
|
@ -741,152 +741,6 @@ TEST(HybridGaussianFactor, TwoStateModel4) {
|
|||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper function to specify a Hybrid Bayes Net
|
||||
* P(X1)P(Z1 | X1, X2, M1) and convert it to a Hybrid Factor Graph
|
||||
* ϕ(X1)ϕ(X1, X2, M1; Z1) by converting to likelihoods given Z1.
|
||||
*
|
||||
* We can specify either different means or different sigmas,
|
||||
* or both for each hybrid factor component.
|
||||
*
|
||||
* @param values Initial values for linearization.
|
||||
* @param means The mean values for the conditional components.
|
||||
* @param sigmas Noise model sigma values (standard deviation).
|
||||
* @param m1 The discrete mode key.
|
||||
* @param z1 The measurement value.
|
||||
* @return HybridGaussianFactorGraph
|
||||
*/
|
||||
static HybridGaussianFactorGraph GetFactorGraphFromBayesNet(
|
||||
const gtsam::Values &values, const std::vector<double> &means,
|
||||
const std::vector<double> &sigmas, DiscreteKey &m1, double z1 = 0.0) {
|
||||
// Noise models
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
// HybridGaussianFactor component factors
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[0], model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[1], model1);
|
||||
|
||||
/// Get terms for each p^m(z1 | x1, x2)
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
double x1 = values.at<double>(X(0)), x2 = values.at<double>(X(1));
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(0), H0_1 /*Sp1*/},
|
||||
{X(1), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(0), H1_1 /*Sp1*/},
|
||||
{X(1), H1_2 /*Tp2*/}};
|
||||
// Create conditional P(Z1 | X1, X2, M1)
|
||||
auto conditionals = std::vector{
|
||||
std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)};
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(1)}, KeyVector{X(0), X(1)}, DiscreteKeys{m1}, conditionals);
|
||||
|
||||
// Create FG via toFactorGraph
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::I_1x1 * z1); // Set Z1
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(0), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
return mixture_fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test Hybrid Factor Graph.
|
||||
*
|
||||
* We specify a hybrid Bayes network P(Z | X, M) = P(X1)P(Z1 | X1, X2, M1),
|
||||
* which is then converted to a factor graph by specifying Z1.
|
||||
* This is different from the TwoStateModel version since
|
||||
* we use a factor with 2 continuous variables ϕ(x1, x2, m1)
|
||||
* directly instead of a conditional.
|
||||
* This serves as a good sanity check.
|
||||
*
|
||||
* P(Z1 | X1, X2, M1) has 2 conditionals each for the binary
|
||||
* mode m1.
|
||||
*/
|
||||
TEST(HybridGaussianFactor, FactorGraphFromBayesNet) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 1.75;
|
||||
values.insert(X(0), x1);
|
||||
values.insert(X(1), x2);
|
||||
|
||||
// Different means, same sigma
|
||||
std::vector<double> means{0.0, 2.0}, sigmas{1e-0, 1e-0};
|
||||
|
||||
HybridGaussianFactorGraph hfg =
|
||||
GetFactorGraphFromBayesNet(values, means, sigmas, m1, 0.0);
|
||||
|
||||
{
|
||||
// With no measurement on X2, each mode should be equally likely
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(-1.75)}},
|
||||
DiscreteValues{{M(1), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
VectorValues cont0 = bn->optimize(dv0);
|
||||
double error0 = bn->error(HybridValues(cont0, dv0));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error0, 1e-9);
|
||||
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
VectorValues cont1 = bn->optimize(dv1);
|
||||
double error1 = bn->error(HybridValues(cont1, dv1));
|
||||
EXPECT_DOUBLES_EQUAL(error0, error1, 1e-9);
|
||||
}
|
||||
{
|
||||
// If we add a measurement on X2, we have more information to work with.
|
||||
// Add a measurement on X2
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
GaussianConditional meas_z2(Z(2), Vector1(2.0), I_1x1, X(1), I_1x1,
|
||||
prior_noise);
|
||||
auto prior_x2 = meas_z2.likelihood(Vector1(x2));
|
||||
|
||||
hfg.push_back(prior_x2);
|
||||
|
||||
auto bn = hfg.eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
// regression
|
||||
HybridValues expected(
|
||||
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(0.25)}},
|
||||
DiscreteValues{{M(1), 1}});
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
VectorValues cont0 = bn->optimize(dv0);
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(2.12692448787, bn->error(HybridValues(cont0, dv0)),
|
||||
1e-9);
|
||||
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
VectorValues cont1 = bn->optimize(dv1);
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.126928487854, bn->error(HybridValues(cont1, dv1)),
|
||||
1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
namespace test_direct_factor_graph {
|
||||
/**
|
||||
* @brief Create a Factor Graph by directly specifying all
|
||||
|
|
@ -902,10 +756,11 @@ namespace test_direct_factor_graph {
|
|||
*/
|
||||
static HybridGaussianFactorGraph CreateFactorGraph(
|
||||
const gtsam::Values &values, const std::vector<double> &means,
|
||||
const std::vector<double> &sigmas, DiscreteKey &m1) {
|
||||
const std::vector<double> &sigmas, DiscreteKey &m1,
|
||||
double measurement_noise = 1e-3) {
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, measurement_noise);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[0], model0)
|
||||
|
|
@ -917,10 +772,10 @@ static HybridGaussianFactorGraph CreateFactorGraph(
|
|||
// Create HybridGaussianFactor
|
||||
std::vector<GaussianFactorValuePair> factors{
|
||||
{f0, ComputeLogNormalizer(model0)}, {f1, ComputeLogNormalizer(model1)}};
|
||||
HybridGaussianFactor mixtureFactor({X(0), X(1)}, {m1}, factors);
|
||||
HybridGaussianFactor motionFactor({X(0), X(1)}, m1, factors);
|
||||
|
||||
HybridGaussianFactorGraph hfg;
|
||||
hfg.push_back(mixtureFactor);
|
||||
hfg.push_back(motionFactor);
|
||||
|
||||
hfg.push_back(PriorFactor<double>(X(0), values.at<double>(X(0)), prior_noise)
|
||||
.linearize(values));
|
||||
|
|
@ -1025,10 +880,8 @@ TEST(HybridGaussianFactor, DifferentCovariancesFG) {
|
|||
std::vector<double> means = {0.0, 0.0}, sigmas = {1e2, 1e-2};
|
||||
|
||||
// Create FG with HybridGaussianFactor and prior on X1
|
||||
HybridGaussianFactorGraph mixture_fg =
|
||||
CreateFactorGraph(values, means, sigmas, m1);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
HybridGaussianFactorGraph fg = CreateFactorGraph(values, means, sigmas, m1);
|
||||
auto hbn = fg.eliminateSequential();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(0), Vector1(0.0));
|
||||
|
|
|
|||
Loading…
Reference in New Issue