Updated testSQP to use a real SQP implementation as separate factors on the previous problem. SQP now works.
parent
76d0a60b88
commit
7fc68e2d90
120
cpp/testSQP.cpp
120
cpp/testSQP.cpp
|
@ -24,9 +24,13 @@ using namespace boost::assign;
|
|||
* This example uses a nonlinear objective function and
|
||||
* nonlinear equality constraint. The formulation is actually
|
||||
* the Choleski form that creates the full Hessian explicitly,
|
||||
* which should really be avoided with our QR-based machinery
|
||||
* which should really be avoided with our QR-based machinery.
|
||||
*
|
||||
* Note: the update equation used here has a fixed step size
|
||||
* and gain that is rather arbitrarily chosen, and as such,
|
||||
* will take a silly number of iterations.
|
||||
*/
|
||||
TEST (SQP, problem1 ) {
|
||||
TEST (SQP, problem1_choleski ) {
|
||||
bool verbose = false;
|
||||
// use a nonlinear function of f(x) = x^2+y^2
|
||||
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
||||
|
@ -116,9 +120,117 @@ TEST (SQP, problem1 ) {
|
|||
expected.insert("y", Vector_(1, -0.5));
|
||||
CHECK(assert_equal(state["x"], expected["x"], 1e-2));
|
||||
CHECK(assert_equal(state["y"], expected["y"], 1e-2));
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* This example uses a nonlinear objective function and
|
||||
* nonlinear equality constraint. This formulation splits
|
||||
* the constraint into a factor and a linear constraint.
|
||||
*
|
||||
* This example uses the same silly number of iterations as the
|
||||
* previous example.
|
||||
*/
|
||||
TEST (SQP, problem1_sqp ) {
|
||||
bool verbose = false;
|
||||
// use a nonlinear function of f(x) = x^2+y^2
|
||||
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
||||
// Lagrangian: f(x) + lam*g(x)
|
||||
|
||||
// state structure: [x y lam]
|
||||
VectorConfig init, state;
|
||||
init.insert("x", Vector_(1, 1.0));
|
||||
init.insert("y", Vector_(1, 1.0));
|
||||
init.insert("lam", Vector_(1, 1.0));
|
||||
state = init;
|
||||
|
||||
if (verbose) init.print("Initial State");
|
||||
|
||||
// loop until convergence
|
||||
int maxIt = 50;
|
||||
for (int i = 0; i<maxIt; ++i) {
|
||||
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
|
||||
|
||||
// extract the states
|
||||
double x, y, lam;
|
||||
x = state["x"](0);
|
||||
y = state["y"](0);
|
||||
lam = state["lam"](0);
|
||||
|
||||
// create components
|
||||
Matrix A = eye(2);
|
||||
Matrix gradG = Matrix_(1, 2,
|
||||
2*x, -1.0);
|
||||
Vector g = Vector_(1,
|
||||
x*x-y-5);
|
||||
Vector b = Vector_(2, x, y);
|
||||
|
||||
/** create the linear factor
|
||||
* ||h(x)-z||^2 => ||Ax-b||^2
|
||||
* where:
|
||||
* h(x) simply returns the inputs
|
||||
* z zeros(2)
|
||||
* A identity
|
||||
* b linearization point
|
||||
*/
|
||||
GaussianFactor::shared_ptr f1(
|
||||
new GaussianFactor("x", sub(A, 0,2, 0,1), // A(:,1)
|
||||
"y", sub(A, 0,2, 1,2), // A(:,2)
|
||||
b, // rhs of f(x)
|
||||
1.0)); // arbitrary sigma
|
||||
|
||||
/** create the constraint-linear factor
|
||||
* Provides a mechanism to use variable gain to force the constraint
|
||||
* to zero
|
||||
* lam*gradG*dx + dlam + lam
|
||||
* formulated in matrix form as:
|
||||
* [lam*gradG eye(1)] [dx; dlam] = lam
|
||||
*/
|
||||
GaussianFactor::shared_ptr f2(
|
||||
new GaussianFactor("x", lam*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
|
||||
"y", lam*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
|
||||
"lam", eye(1), // dlam term
|
||||
Vector_(1.0, lam), // rhs is lambda
|
||||
1.0)); // arbitrary sigma
|
||||
|
||||
// create the actual constraint
|
||||
// [gradG] [x; y]- g = 0
|
||||
GaussianFactor::shared_ptr c1(
|
||||
new GaussianFactor("x", sub(gradG, 0,1, 0,1), // slice first part of gradG
|
||||
"y", sub(gradG, 0,1, 1,2), // slice second part of gradG
|
||||
g, // value of constraint function
|
||||
0.0)); // force to constraint
|
||||
|
||||
// construct graph
|
||||
GaussianFactorGraph fg;
|
||||
fg.push_back(f1);
|
||||
fg.push_back(f2);
|
||||
fg.push_back(c1);
|
||||
if (verbose) fg.print("Graph");
|
||||
|
||||
// solve
|
||||
Ordering ord;
|
||||
ord += "x", "y", "lam";
|
||||
VectorConfig delta = fg.optimize(ord);
|
||||
if (verbose) delta.print("Delta");
|
||||
|
||||
// update initial estimate
|
||||
double gain = 0.3;
|
||||
VectorConfig newState;
|
||||
newState.insert("x", state["x"]-gain*delta["x"]);
|
||||
newState.insert("y", state["y"]-gain*delta["y"]);
|
||||
newState.insert("lam", state["lam"]-gain*delta["lam"]);
|
||||
state = newState;
|
||||
|
||||
if (verbose) state.print("Updated State");
|
||||
}
|
||||
|
||||
// verify that it converges to the nearest optimal point
|
||||
VectorConfig expected;
|
||||
expected.insert("x", Vector_(1, 2.12));
|
||||
expected.insert("y", Vector_(1, -0.5));
|
||||
CHECK(assert_equal(state["x"], expected["x"], 1e-2));
|
||||
CHECK(assert_equal(state["y"], expected["y"], 1e-2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
|
|
Loading…
Reference in New Issue