Merged in feature/small_improvements (pull request #208)

Feature/small_improvements
release/4.3a0
Frank Dellaert 2016-01-28 08:18:02 -08:00
commit 7f82df21b7
6 changed files with 143 additions and 28 deletions

View File

@ -120,9 +120,9 @@ Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> H) {
Rot3 R = Rot3::Expmap(omega.vector()); Rot3 R = Rot3::Expmap(omega.vector());
double theta2 = omega.dot(omega); double theta2 = omega.dot(omega);
if (theta2 > std::numeric_limits<double>::epsilon()) { if (theta2 > std::numeric_limits<double>::epsilon()) {
double omega_v = omega.dot(v); // translation parallel to axis Point3 t_parallel = omega * omega.dot(v); // translation parallel to axis
Point3 omega_cross_v = omega.cross(v); // points towards axis Point3 omega_cross_v = omega.cross(v); // points towards axis
Point3 t = (omega_cross_v - R * omega_cross_v + omega_v * omega) / theta2; Point3 t = (omega_cross_v - R * omega_cross_v + t_parallel) / theta2;
return Pose3(R, t); return Pose3(R, t);
} else { } else {
return Pose3(R, v); return Pose3(R, v);

View File

@ -47,7 +47,7 @@ SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
// get components of axis \omega, where is a unit vector // get components of axis \omega, where is a unit vector
const double& wx = axis.x(), wy = axis.y(), wz = axis.z(); const double& wx = axis.x(), wy = axis.y(), wz = axis.z();
const double costheta = cos(theta), sintheta = sin(theta), c_1 = 1 - costheta; const double costheta = cos(theta), sintheta = sin(theta), s2 = sin(theta/2.0), c_1 = 2.0*s2*s2;
const double wx_sintheta = wx * sintheta, wy_sintheta = wy * sintheta, const double wx_sintheta = wx * sintheta, wy_sintheta = wy * sintheta,
wz_sintheta = wz * sintheta; wz_sintheta = wz * sintheta;
@ -130,7 +130,6 @@ Vector3 SO3::Logmap(const SO3& R, ChartJacobian H) {
/* ************************************************************************* */ /* ************************************************************************* */
Matrix3 SO3::ExpmapDerivative(const Vector3& omega) { Matrix3 SO3::ExpmapDerivative(const Vector3& omega) {
using std::cos;
using std::sin; using std::sin;
const double theta2 = omega.dot(omega); const double theta2 = omega.dot(omega);

View File

@ -133,6 +133,17 @@ TEST (Point3, distance) {
EXPECT(assert_equal(numH2, H2, 1e-8)); EXPECT(assert_equal(numH2, H2, 1e-8));
} }
/* ************************************************************************* */
TEST(Point3, cross) {
Matrix aH1, aH2;
boost::function<Point3(const Point3&, const Point3&)> f =
boost::bind(&Point3::cross, _1, _2, boost::none, boost::none);
const Point3 omega(0, 1, 0), theta(4, 6, 8);
omega.cross(theta, aH1, aH2);
EXPECT(assert_equal(numericalDerivative21(f, omega, theta), aH1));
EXPECT(assert_equal(numericalDerivative22(f, omega, theta), aH2));
}
/* ************************************************************************* */ /* ************************************************************************* */
int main() { int main() {
TestResult tr; TestResult tr;

View File

@ -715,7 +715,42 @@ TEST( Pose3, ExpmapDerivative1) {
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Pose3, LogmapDerivative1) { TEST(Pose3, ExpmapDerivative2) {
// Iserles05an (Lie-group Methods) says:
// scalar is easy: d exp(a(t)) / dt = exp(a(t)) a'(t)
// matrix is hard: d exp(A(t)) / dt = exp(A(t)) dexp[-A(t)] A'(t)
// where A(t): T -> se(3) is a trajectory in the tangent space of SE(3)
// and dexp[A] is a linear map from 4*4 to 4*4 derivatives of se(3)
// Hence, the above matrix equation is typed: 4*4 = SE(3) * linear_map(4*4)
// In GTSAM, we don't work with the Lie-algebra elements A directly, but with 6-vectors.
// xi is easy: d Expmap(xi(t)) / dt = ExmapDerivative[xi(t)] * xi'(t)
// Let's verify the above formula.
auto xi = [](double t) {
Vector6 v;
v << 2 * t, sin(t), 4 * t * t, 2 * t, sin(t), 4 * t * t;
return v;
};
auto xi_dot = [](double t) {
Vector6 v;
v << 2, cos(t), 8 * t, 2, cos(t), 8 * t;
return v;
};
// We define a function T
auto T = [xi](double t) { return Pose3::Expmap(xi(t)); };
for (double t = -2.0; t < 2.0; t += 0.3) {
const Matrix expected = numericalDerivative11<Pose3, double>(T, t);
const Matrix actual = Pose3::ExpmapDerivative(xi(t)) * xi_dot(t);
CHECK(assert_equal(expected, actual, 1e-7));
}
}
/* ************************************************************************* */
TEST( Pose3, LogmapDerivative) {
Matrix6 actualH; Matrix6 actualH;
Vector6 w; w << 0.1, 0.2, 0.3, 4.0, 5.0, 6.0; Vector6 w; w << 0.1, 0.2, 0.3, 4.0, 5.0, 6.0;
Pose3 p = Pose3::Expmap(w); Pose3 p = Pose3::Expmap(w);

View File

@ -244,44 +244,99 @@ TEST(Rot3, retract_localCoordinates2)
EXPECT(assert_equal(t1, t2.retract(d21))); EXPECT(assert_equal(t1, t2.retract(d21)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
Vector w = Vector3(0.1, 0.27, -0.2); namespace exmap_derivative {
static const Vector3 w(0.1, 0.27, -0.2);
// Left trivialization Derivative of exp(w) wrpt w: }
// Left trivialized Derivative of exp(w) wrpt w:
// How does exp(w) change when w changes? // How does exp(w) change when w changes?
// We find a y such that: exp(w) exp(y) = exp(w + dw) for dw --> 0 // We find a y such that: exp(w) exp(y) = exp(w + dw) for dw --> 0
// => y = log (exp(-w) * exp(w+dw)) // => y = log (exp(-w) * exp(w+dw))
Vector3 testDexpL(const Vector3& dw) { Vector3 testDexpL(const Vector3& dw) {
using exmap_derivative::w;
return Rot3::Logmap(Rot3::Expmap(-w) * Rot3::Expmap(w + dw)); return Rot3::Logmap(Rot3::Expmap(-w) * Rot3::Expmap(w + dw));
} }
TEST( Rot3, ExpmapDerivative) { TEST( Rot3, ExpmapDerivative) {
Matrix actualDexpL = Rot3::ExpmapDerivative(w); using exmap_derivative::w;
Matrix expectedDexpL = numericalDerivative11<Vector3, Vector3>(testDexpL, const Matrix actualDexpL = Rot3::ExpmapDerivative(w);
const Matrix expectedDexpL = numericalDerivative11<Vector3, Vector3>(testDexpL,
Vector3::Zero(), 1e-2); Vector3::Zero(), 1e-2);
EXPECT(assert_equal(expectedDexpL, actualDexpL,1e-7)); EXPECT(assert_equal(expectedDexpL, actualDexpL,1e-7));
Matrix actualDexpInvL = Rot3::LogmapDerivative(w); const Matrix actualDexpInvL = Rot3::LogmapDerivative(w);
EXPECT(assert_equal(expectedDexpL.inverse(), actualDexpInvL,1e-7)); EXPECT(assert_equal(expectedDexpL.inverse(), actualDexpInvL,1e-7));
}
/* ************************************************************************* */
TEST( Rot3, ExpmapDerivative2)
{
const Vector3 theta(0.1, 0, 0.1);
const Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(
boost::bind(&Rot3::Expmap, _1, boost::none), theta);
CHECK(assert_equal(Jexpected, Rot3::ExpmapDerivative(theta)));
CHECK(assert_equal(Matrix3(Jexpected.transpose()), Rot3::ExpmapDerivative(-theta)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
Vector3 thetahat(0.1, 0, 0.1); TEST( Rot3, ExpmapDerivative3)
TEST( Rot3, ExpmapDerivative2)
{ {
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>( const Vector3 theta(10, 20, 30);
boost::bind(&Rot3::Expmap, _1, boost::none), thetahat); const Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(
boost::bind(&Rot3::Expmap, _1, boost::none), theta);
Matrix Jactual = Rot3::ExpmapDerivative(thetahat); CHECK(assert_equal(Jexpected, Rot3::ExpmapDerivative(theta)));
CHECK(assert_equal(Jexpected, Jactual)); CHECK(assert_equal(Matrix3(Jexpected.transpose()), Rot3::ExpmapDerivative(-theta)));
}
Matrix Jactual2 = Rot3::ExpmapDerivative(thetahat); /* ************************************************************************* */
CHECK(assert_equal(Jexpected, Jactual2)); TEST(Rot3, ExpmapDerivative4) {
// Iserles05an (Lie-group Methods) says:
// scalar is easy: d exp(a(t)) / dt = exp(a(t)) a'(t)
// matrix is hard: d exp(A(t)) / dt = exp(A(t)) dexp[-A(t)] A'(t)
// where A(t): R -> so(3) is a trajectory in the tangent space of SO(3)
// and dexp[A] is a linear map from 3*3 to 3*3 derivatives of se(3)
// Hence, the above matrix equation is typed: 3*3 = SO(3) * linear_map(3*3)
// In GTSAM, we don't work with the skew-symmetric matrices A directly, but with 3-vectors.
// omega is easy: d Expmap(w(t)) / dt = ExmapDerivative[w(t)] * w'(t)
// Let's verify the above formula.
auto w = [](double t) { return Vector3(2 * t, sin(t), 4 * t * t); };
auto w_dot = [](double t) { return Vector3(2, cos(t), 8 * t); };
// We define a function R
auto R = [w](double t) { return Rot3::Expmap(w(t)); };
for (double t = -2.0; t < 2.0; t += 0.3) {
const Matrix expected = numericalDerivative11<Rot3, double>(R, t);
const Matrix actual = Rot3::ExpmapDerivative(w(t)) * w_dot(t);
CHECK(assert_equal(expected, actual, 1e-7));
}
}
/* ************************************************************************* */
TEST(Rot3, ExpmapDerivative5) {
auto w = [](double t) { return Vector3(2 * t, sin(t), 4 * t * t); };
auto w_dot = [](double t) { return Vector3(2, cos(t), 8 * t); };
// Same as above, but define R as mapping local coordinates to neighborhood aroud R0.
const Rot3 R0 = Rot3::Rodrigues(0.1, 0.4, 0.2);
auto R = [R0, w](double t) { return R0.expmap(w(t)); };
for (double t = -2.0; t < 2.0; t += 0.3) {
const Matrix expected = numericalDerivative11<Rot3, double>(R, t);
const Matrix actual = Rot3::ExpmapDerivative(w(t)) * w_dot(t);
CHECK(assert_equal(expected, actual, 1e-7));
}
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Rot3, jacobianExpmap ) TEST( Rot3, jacobianExpmap )
{ {
Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(boost::bind( const Vector3 thetahat(0.1, 0, 0.1);
const Matrix Jexpected = numericalDerivative11<Rot3, Vector3>(boost::bind(
&Rot3::Expmap, _1, boost::none), thetahat); &Rot3::Expmap, _1, boost::none), thetahat);
Matrix3 Jactual; Matrix3 Jactual;
const Rot3 R = Rot3::Expmap(thetahat, Jactual); const Rot3 R = Rot3::Expmap(thetahat, Jactual);
@ -291,18 +346,20 @@ TEST( Rot3, jacobianExpmap )
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Rot3, LogmapDerivative ) TEST( Rot3, LogmapDerivative )
{ {
Rot3 R = Rot3::Expmap(thetahat); // some rotation const Vector3 thetahat(0.1, 0, 0.1);
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind( const Rot3 R = Rot3::Expmap(thetahat); // some rotation
const Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
&Rot3::Logmap, _1, boost::none), R); &Rot3::Logmap, _1, boost::none), R);
Matrix3 Jactual = Rot3::LogmapDerivative(thetahat); const Matrix3 Jactual = Rot3::LogmapDerivative(thetahat);
EXPECT(assert_equal(Jexpected, Jactual)); EXPECT(assert_equal(Jexpected, Jactual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( Rot3, jacobianLogmap ) TEST( Rot3, JacobianLogmap )
{ {
Rot3 R = Rot3::Expmap(thetahat); // some rotation const Vector3 thetahat(0.1, 0, 0.1);
Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind( const Rot3 R = Rot3::Expmap(thetahat); // some rotation
const Matrix Jexpected = numericalDerivative11<Vector,Rot3>(boost::bind(
&Rot3::Logmap, _1, boost::none), R); &Rot3::Logmap, _1, boost::none), R);
Matrix3 Jactual; Matrix3 Jactual;
Rot3::Logmap(R, Jactual); Rot3::Logmap(R, Jactual);

View File

@ -141,7 +141,20 @@ namespace gtsam {
/* ************************************************************************* */ /* ************************************************************************* */
pair<Matrix,Vector> GaussianBayesNet::matrix() const pair<Matrix,Vector> GaussianBayesNet::matrix() const
{ {
return GaussianFactorGraph(*this).jacobian(); GaussianFactorGraph factorGraph(*this);
KeySet keys = factorGraph.keys();
// add frontal keys in order
Ordering ordering;
BOOST_FOREACH (const sharedConditional& cg, *this)
BOOST_FOREACH (Key key, cg->frontals()) {
ordering.push_back(key);
keys.erase(key);
}
// add remaining keys in case Bayes net is incomplete
BOOST_FOREACH (Key key, keys)
ordering.push_back(key);
// return matrix and RHS
return factorGraph.jacobian(ordering);
} }
///* ************************************************************************* */ ///* ************************************************************************* */