Added IMUKittExample
parent
201a7bfda5
commit
7f2a903bea
|
@ -0,0 +1,165 @@
|
|||
close all
|
||||
clc
|
||||
|
||||
import gtsam.*;
|
||||
|
||||
IMU_data = dmlread('IMU.txt');
|
||||
VO_data = dmlread('VO.txt');
|
||||
GPS_data = dmlread('GPS.txt');
|
||||
|
||||
SummaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ...
|
||||
gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ...
|
||||
1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3));
|
||||
|
||||
%% Set initial conditions for the estimated trajectory
|
||||
disp('TODO: we have GPS so this initialization is not right')
|
||||
currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame)
|
||||
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
|
||||
bias_acc = [0;0;0]; % we initialize accelerometer biases to zero
|
||||
bias_omega = [0;0;0]; % we initialize gyro biases to zero
|
||||
|
||||
%% Solver object
|
||||
isamParams = ISAM2Params;
|
||||
isamParams.setRelinearizeSkip(1);
|
||||
isam = gtsam.ISAM2(isamParams);
|
||||
|
||||
%% create nonlinear factor graph
|
||||
factors = NonlinearFactorGraph;
|
||||
values = Values;
|
||||
|
||||
%% Create prior on initial pose, velocity, and biases
|
||||
sigma_init_x = 1.0
|
||||
sigma_init_v = 1.0
|
||||
sigma_init_b = 1.0
|
||||
|
||||
values.insert(symbol('x',0), currentPoseGlobal);
|
||||
values.insert(symbol('v',0), LieVector(currentVelocityGlobal) );
|
||||
values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) );
|
||||
|
||||
% Prior on initial pose
|
||||
factors.add(PriorFactorPose3(symbol('x',0), ...
|
||||
currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x)));
|
||||
% Prior on initial velocity
|
||||
factors.add(PriorFactorLieVector(symbol('v',0), ...
|
||||
LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v)));
|
||||
% Prior on initial bias
|
||||
factors.add(PriorFactorConstantBias(symbol('b',0), ...
|
||||
imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
|
||||
|
||||
%% Main loop:
|
||||
% (1) we read the measurements
|
||||
% (2) we create the corresponding factors in the graph
|
||||
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
|
||||
|
||||
i = 2;
|
||||
lastTime = 0;
|
||||
lastIndex = 0;
|
||||
currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
|
||||
|
||||
times = sort([VO_data(:,1); GPS_data(:,1)]); % this are the time-stamps at which we want to initialize a new node in the graph
|
||||
IMU_times = IMU_data(:,1);
|
||||
|
||||
disp('TODO: still needed to take care of the initial time')
|
||||
|
||||
for t = times
|
||||
% At each non=IMU measurement we initialize a new node in the graph
|
||||
currentIndex = find( times == t );
|
||||
currentPoseKey = symbol('x',currentIndex);
|
||||
currentVelKey = symbol('v',currentIndex);
|
||||
currentBiasKey = symbol('b',currentIndex);
|
||||
|
||||
%% add preintegrated IMU factor between previous state and current state
|
||||
% =======================================================================
|
||||
IMUbetweenTimesIndices = find( IMU_times>+t_previous & IMU_times<= t);
|
||||
% all imu measurements occurred between t_previous and t
|
||||
|
||||
% we assume that each row of the IMU.txt file has the following structure:
|
||||
% timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z
|
||||
disp('TODO: We want don t want to preintegrate with zero bias, but to use the most recent estimate')
|
||||
currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
|
||||
for i=1:length(IMUbetweenTimesIndices)
|
||||
index = IMUbetweenTimesIndices(i); % the row of the IMU_data matrix that we have to integrate
|
||||
deltaT = IMU_data(index,2);
|
||||
accMeas = IMU_data(index,3:5);
|
||||
omegaMeas = IMU_data(index,6:8);
|
||||
% Accumulate preintegrated measurement
|
||||
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
|
||||
end
|
||||
|
||||
disp('TODO: is the imu noise right?')
|
||||
% Create IMU factor
|
||||
factors.add(ImuFactor( ...
|
||||
previousPoseKey, previousVelKey, ...
|
||||
currentPoseKey, currentVelKey, ...
|
||||
currentBiasKey, currentSummarizedMeasurement, g, cor_v, ...
|
||||
noiseModel.Isotropic.Sigma(9, 1e-6)));
|
||||
% =======================================================================
|
||||
|
||||
|
||||
%% add factor corresponding to GPS measurements (if available at the current time)
|
||||
% =======================================================================
|
||||
if isempty( find(GPS_data(:,1) == t ) ) == 0 % it is a GPS measurement
|
||||
if length( find(GPS_data(:,1)) ) > 1
|
||||
error('more GPS measurements at the same time stamp: it should be an error')
|
||||
end
|
||||
|
||||
index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate
|
||||
GPSmeas = GPS_data(index,2:4);
|
||||
|
||||
noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x))
|
||||
|
||||
% add factor
|
||||
disp('TODO: is the GPS noise right?')
|
||||
factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) );
|
||||
end
|
||||
% =======================================================================
|
||||
|
||||
|
||||
%% add factor corresponding to VO measurements (if available at the current time)
|
||||
% =======================================================================
|
||||
if isempty( find(VO_data(:,1) == t ) )== 0 % it is a GPS measurement
|
||||
if length( find(VO_data(:,1)) ) > 1
|
||||
error('more VO measurements at the same time stamp: it should be an error')
|
||||
end
|
||||
|
||||
index = find( VO_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate
|
||||
VOmeas_pos = VO_data(index,2:4)';
|
||||
VOmeas_ang = VO_data(index,5:7)';
|
||||
|
||||
VOpose = Pose3( Rot3(VOmeas_ang) , Point3(VOmeas_pos) );
|
||||
noiseModelVO = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x))
|
||||
|
||||
% add factor
|
||||
disp('TODO: is the VO noise right?')
|
||||
factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO));
|
||||
|
||||
lastVOPoseKey = currentPoseKey;
|
||||
end
|
||||
% =======================================================================
|
||||
|
||||
disp('TODO: add values')
|
||||
% values.insert(, initialPose);
|
||||
% values.insert(symbol('v',lastIndex+1), initialVel);
|
||||
|
||||
%% Update solver
|
||||
% =======================================================================
|
||||
isam.update(factors, values);
|
||||
factors = NonlinearFactorGraph;
|
||||
values = Values;
|
||||
|
||||
isam.calculateEstimate(currentPoseKey);
|
||||
% M = isam.marginalCovariance(key_pose);
|
||||
% =======================================================================
|
||||
|
||||
previousPoseKey = currentPoseKey;
|
||||
previousVelKey = currentVelKey;
|
||||
t_previous = t;
|
||||
end
|
||||
|
||||
disp('TODO: display results')
|
||||
% figure(1)
|
||||
% hold on;
|
||||
% plot(positions(1,:), positions(2,:), '-b');
|
||||
% plot3DTrajectory(isam.calculateEstimate, 'g-');
|
||||
% axis equal;
|
||||
% legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')
|
Loading…
Reference in New Issue