remove linearizedFactorGraph and use linearized unary and binary factors
parent
d48b1fc840
commit
7f07509388
|
@ -120,21 +120,13 @@ using MotionModel = BetweenFactor<double>;
|
|||
// Test fixture with switching network.
|
||||
/// ϕ(X(0)) .. ϕ(X(k),X(k+1)) .. ϕ(X(k);z_k) .. ϕ(M(0)) .. ϕ(M(K-3),M(K-2))
|
||||
struct Switching {
|
||||
private:
|
||||
HybridNonlinearFactorGraph nonlinearFactorGraph_;
|
||||
|
||||
public:
|
||||
size_t K;
|
||||
DiscreteKeys modes;
|
||||
HybridNonlinearFactorGraph unaryFactors, binaryFactors, modeChain;
|
||||
HybridGaussianFactorGraph linearizedFactorGraph;
|
||||
HybridGaussianFactorGraph linearUnaryFactors, linearBinaryFactors;
|
||||
Values linearizationPoint;
|
||||
|
||||
// Access the flat nonlinear factor graph.
|
||||
const HybridNonlinearFactorGraph &nonlinearFactorGraph() const {
|
||||
return nonlinearFactorGraph_;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create with given number of time steps.
|
||||
*
|
||||
|
@ -164,36 +156,33 @@ struct Switching {
|
|||
// Create hybrid factor graph.
|
||||
|
||||
// Add a prior ϕ(X(0)) on X(0).
|
||||
nonlinearFactorGraph_.emplace_shared<PriorFactor<double>>(
|
||||
unaryFactors.emplace_shared<PriorFactor<double>>(
|
||||
X(0), measurements.at(0), Isotropic::Sigma(1, prior_sigma));
|
||||
unaryFactors.push_back(nonlinearFactorGraph_.back());
|
||||
|
||||
// Add "motion models" ϕ(X(k),X(k+1),M(k)).
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
auto motion_models = motionModels(k, between_sigma);
|
||||
nonlinearFactorGraph_.emplace_shared<HybridNonlinearFactor>(modes[k],
|
||||
motion_models);
|
||||
binaryFactors.push_back(nonlinearFactorGraph_.back());
|
||||
binaryFactors.emplace_shared<HybridNonlinearFactor>(modes[k],
|
||||
motion_models);
|
||||
}
|
||||
|
||||
// Add measurement factors ϕ(X(k);z_k).
|
||||
auto measurement_noise = Isotropic::Sigma(1, prior_sigma);
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
nonlinearFactorGraph_.emplace_shared<PriorFactor<double>>(
|
||||
X(k), measurements.at(k), measurement_noise);
|
||||
unaryFactors.push_back(nonlinearFactorGraph_.back());
|
||||
unaryFactors.emplace_shared<PriorFactor<double>>(X(k), measurements.at(k),
|
||||
measurement_noise);
|
||||
}
|
||||
|
||||
// Add "mode chain" ϕ(M(0)) ϕ(M(0),M(1)) ... ϕ(M(K-3),M(K-2))
|
||||
modeChain = createModeChain(transitionProbabilityTable);
|
||||
nonlinearFactorGraph_ += modeChain;
|
||||
|
||||
// Create the linearization point.
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k + 1));
|
||||
}
|
||||
|
||||
linearizedFactorGraph = *nonlinearFactorGraph_.linearize(linearizationPoint);
|
||||
linearUnaryFactors = *unaryFactors.linearize(linearizationPoint);
|
||||
linearBinaryFactors = *binaryFactors.linearize(linearizationPoint);
|
||||
}
|
||||
|
||||
// Create motion models for a given time step
|
||||
|
@ -224,6 +213,14 @@ struct Switching {
|
|||
}
|
||||
return chain;
|
||||
}
|
||||
|
||||
HybridGaussianFactorGraph linearizedFactorGraph() {
|
||||
HybridGaussianFactorGraph graph;
|
||||
graph.push_back(linearUnaryFactors);
|
||||
graph.push_back(linearBinaryFactors);
|
||||
graph.push_back(modeChain);
|
||||
return graph;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue