Clean up BN, Factor
parent
45dec16225
commit
7e912c5cdd
|
@ -57,7 +57,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"id": "bayesnet_import_code"
|
||||
},
|
||||
|
@ -88,7 +88,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
|
@ -127,7 +127,30 @@
|
|||
"\t1\n",
|
||||
"]\n",
|
||||
" b = [ 0 ]\n",
|
||||
" Noise model: unit (1) \n",
|
||||
" Noise model: unit (1) \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create a simple Gaussian Factor Graph P(x0) P(x1|x0) P(x2|x1)\n",
|
||||
"graph = GaussianFactorGraph()\n",
|
||||
"model = gtsam.noiseModel.Isotropic.Sigma(1, 1.0)\n",
|
||||
"graph.add(X(0), -np.eye(1), np.zeros(1), model)\n",
|
||||
"graph.add(X(0), -np.eye(1), X(1), np.eye(1), np.zeros(1), model)\n",
|
||||
"graph.add(X(1), -np.eye(1), X(2), np.eye(1), np.zeros(1), model)\n",
|
||||
"print(\"Original Factor Graph:\")\n",
|
||||
"graph.print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"Resulting BayesNet:\n",
|
||||
"\n",
|
||||
|
@ -155,15 +178,6 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create a simple Gaussian Factor Graph P(x0) P(x1|x0) P(x2|x1)\n",
|
||||
"graph = GaussianFactorGraph()\n",
|
||||
"model = gtsam.noiseModel.Isotropic.Sigma(1, 1.0)\n",
|
||||
"graph.add(X(0), -np.eye(1), np.zeros(1), model)\n",
|
||||
"graph.add(X(0), -np.eye(1), X(1), np.eye(1), np.zeros(1), model)\n",
|
||||
"graph.add(X(1), -np.eye(1), X(2), np.eye(1), np.zeros(1), model)\n",
|
||||
"print(\"Original Factor Graph:\")\n",
|
||||
"graph.print()\n",
|
||||
"\n",
|
||||
"# Eliminate sequentially using a specific ordering\n",
|
||||
"ordering = Ordering([X(0), X(1), X(2)])\n",
|
||||
"bayes_net = graph.eliminateSequential(ordering)\n",
|
||||
|
|
|
@ -56,7 +56,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "factor_import_code"
|
||||
},
|
||||
|
@ -85,7 +85,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
|
@ -102,7 +102,10 @@
|
|||
"Prior factor size: 1\n",
|
||||
"Between factor keys: [8646911284551352320, 8646911284551352321] (x0, x1)\n",
|
||||
"Between factor size: 2\n",
|
||||
"Is prior factor empty? False\n"
|
||||
"Is prior factor empty? False\n",
|
||||
"Prior Factor: PriorFactor on x0\n",
|
||||
" prior mean: (0, 0, 0)\n",
|
||||
" noise model: diagonal sigmas [0.1; 0.1; 0.05];\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@ -125,7 +128,7 @@
|
|||
"print(f\"Is prior factor empty? {prior_factor.empty()}\")\n",
|
||||
"\n",
|
||||
"# Factors can be printed\n",
|
||||
"# prior_factor.print(\"Prior Factor: \")"
|
||||
"prior_factor.print(\"Prior Factor: \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -141,7 +144,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
|
|
Loading…
Reference in New Issue