Address Frank's comments
parent
a8ed71abbc
commit
7de3714d54
|
@ -2168,7 +2168,10 @@ virtual class NoiseModelFactor: gtsam::NonlinearFactor {
|
|||
|
||||
#include <gtsam/nonlinear/CustomFactor.h>
|
||||
virtual class CustomFactor: gtsam::NoiseModelFactor {
|
||||
// Note CustomFactor will not be wrapped for MATLAB, as there is no supporting machinery there.
|
||||
/*
|
||||
* Note CustomFactor will not be wrapped for MATLAB, as there is no supporting machinery there.
|
||||
* This is achieved by adding `gtsam::CustomFactor` to the ignore list in `matlab/CMakeLists.txt`.
|
||||
*/
|
||||
CustomFactor();
|
||||
/*
|
||||
* Example:
|
||||
|
|
|
@ -42,17 +42,34 @@ Vector CustomFactor::unwhitenedError(const Values& x, boost::optional<std::vecto
|
|||
* return error
|
||||
* ```
|
||||
*/
|
||||
return this->errorFunction(*this, x, H.get_ptr());
|
||||
return this->error_function_(*this, x, H.get_ptr());
|
||||
} else {
|
||||
/*
|
||||
* In this case, we pass the a `nullptr` to pybind, and it will translated to `None` in Python.
|
||||
* Users can check for `None` in their callback to determine if the Jacobian is requested.
|
||||
*/
|
||||
return this->errorFunction(*this, x, nullptr);
|
||||
return this->error_function_(*this, x, nullptr);
|
||||
}
|
||||
} else {
|
||||
return Vector::Zero(this->dim());
|
||||
}
|
||||
}
|
||||
|
||||
void CustomFactor::print(const std::string &s, const KeyFormatter &keyFormatter) const {
|
||||
std::cout << s << "CustomFactor on ";
|
||||
auto keys_ = this->keys();
|
||||
bool f = false;
|
||||
for (const Key &k: keys_) {
|
||||
if (f)
|
||||
std::cout << ", ";
|
||||
std::cout << keyFormatter(k);
|
||||
f = true;
|
||||
}
|
||||
std::cout << "\n";
|
||||
if (this->noiseModel_)
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
else
|
||||
std::cout << "no noise model" << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -45,13 +45,13 @@ using CustomErrorFunction = std::function<Vector(const CustomFactor&, const Valu
|
|||
* This factor is mainly for creating a custom factor in Python.
|
||||
*/
|
||||
class CustomFactor: public NoiseModelFactor {
|
||||
public:
|
||||
CustomErrorFunction errorFunction;
|
||||
protected:
|
||||
CustomErrorFunction error_function_;
|
||||
|
||||
protected:
|
||||
|
||||
typedef NoiseModelFactor Base;
|
||||
typedef CustomFactor This;
|
||||
using Base = NoiseModelFactor;
|
||||
using This = CustomFactor;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -68,7 +68,7 @@ public:
|
|||
*/
|
||||
CustomFactor(const SharedNoiseModel& noiseModel, const KeyVector& keys, const CustomErrorFunction& errorFunction) :
|
||||
Base(noiseModel, keys) {
|
||||
this->errorFunction = errorFunction;
|
||||
this->error_function_ = errorFunction;
|
||||
}
|
||||
|
||||
~CustomFactor() override = default;
|
||||
|
@ -81,22 +81,7 @@ public:
|
|||
|
||||
/** print */
|
||||
void print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||
std::cout << s << "CustomFactor on ";
|
||||
auto keys_ = this->keys();
|
||||
bool f = false;
|
||||
for (const Key& k: keys_) {
|
||||
if (f)
|
||||
std::cout << ", ";
|
||||
std::cout << keyFormatter(k);
|
||||
f = true;
|
||||
}
|
||||
std::cout << "\n";
|
||||
if (this->noiseModel_)
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
else
|
||||
std::cout << "no noise model" << std::endl;
|
||||
}
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
|
||||
|
||||
|
||||
private:
|
||||
|
|
|
@ -2,11 +2,6 @@
|
|||
|
||||
One now can build factors purely in Python using the `CustomFactor` factor.
|
||||
|
||||
## Theory
|
||||
|
||||
`CustomFactor` is a `NonlinearFactor` that has a `std::function` as its callback.
|
||||
This callback can be translated to a Python function call, thanks to `pybind11`'s functional support.
|
||||
|
||||
## Usage
|
||||
|
||||
In order to use a Python-based factor, one needs to have a Python function with the following signature:
|
||||
|
@ -76,3 +71,40 @@ In general, the Python-based factor works just like their C++ counterparts.
|
|||
Because of the `pybind11`-based translation, the performance of `CustomFactor` is not guaranteed.
|
||||
Also, because `pybind11` needs to lock the Python GIL lock for evaluation of each factor, parallel
|
||||
evaluation of `CustomFactor` is not possible.
|
||||
|
||||
## Implementation
|
||||
|
||||
`CustomFactor` is a `NonlinearFactor` that has a `std::function` as its callback.
|
||||
This callback can be translated to a Python function call, thanks to `pybind11`'s functional support.
|
||||
|
||||
The constructor of `CustomFactor` is
|
||||
```c++
|
||||
/**
|
||||
* Constructor
|
||||
* @param noiseModel shared pointer to noise model
|
||||
* @param keys keys of the variables
|
||||
* @param errorFunction the error functional
|
||||
*/
|
||||
CustomFactor(const SharedNoiseModel& noiseModel, const KeyVector& keys, const CustomErrorFunction& errorFunction) :
|
||||
Base(noiseModel, keys) {
|
||||
this->error_function_ = errorFunction;
|
||||
}
|
||||
```
|
||||
|
||||
At construction time, `pybind11` will pass the handle to the Python callback function as a `std::function` object.
|
||||
|
||||
Something worth special mention is this:
|
||||
```c++
|
||||
/*
|
||||
* NOTE
|
||||
* ==========
|
||||
* pybind11 will invoke a copy if this is `JacobianVector &`, and modifications in Python will not be reflected.
|
||||
*
|
||||
* This is safe because this is passing a const pointer, and pybind11 will maintain the `std::vector` memory layout.
|
||||
* Thus the pointer will never be invalidated.
|
||||
*/
|
||||
using CustomErrorFunction = std::function<Vector(const CustomFactor&, const Values&, const JacobianVector*)>;
|
||||
```
|
||||
|
||||
which is not documented in `pybind11` docs. One needs to be aware of this if they wanted to implement similar
|
||||
"mutable" arguments going across the Python-C++ boundary.
|
|
@ -23,6 +23,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
"""Test the creation of a new CustomFactor"""
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
"""Minimal error function stub"""
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
|
@ -32,6 +33,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
"""Test the creation of a new CustomFactor"""
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
"""Minimal error function stub"""
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
|
@ -42,6 +44,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
expected_pose = Pose2(1, 1, 0)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]) -> np.ndarray:
|
||||
"""Minimal error function with no Jacobian"""
|
||||
key0 = this.keys()[0]
|
||||
error = -v.atPose2(key0).localCoordinates(expected_pose)
|
||||
return error
|
||||
|
@ -102,11 +105,8 @@ class TestCustomFactor(GtsamTestCase):
|
|||
gT2 = Pose2(-1, 4, np.pi)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, _: List[np.ndarray]):
|
||||
key0 = this.keys()[0]
|
||||
key1 = this.keys()[1]
|
||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||
error = Pose2(0, 0, 0).localCoordinates(gT1.between(gT2))
|
||||
return error
|
||||
"""Minimal error function stub"""
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
from gtsam.symbol_shorthand import X
|
||||
|
@ -126,6 +126,13 @@ class TestCustomFactor(GtsamTestCase):
|
|||
expected = Pose2(2, 2, np.pi / 2)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
"""
|
||||
Error function that mimics a BetweenFactor
|
||||
:param this: reference to the current CustomFactor being evaluated
|
||||
:param v: Values object
|
||||
:param H: list of references to the Jacobian arrays
|
||||
:return: the non-linear error
|
||||
"""
|
||||
key0 = this.keys()[0]
|
||||
key1 = this.keys()[1]
|
||||
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
|
||||
|
|
Loading…
Reference in New Issue